-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvec3.h
159 lines (125 loc) · 4.33 KB
/
vec3.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#ifndef VEC3_H
#define VEC3_H
#include <cmath>
#include <iostream>
#include "util.h"
using std::sqrt;
class vec3 {
public:
double e[3];
vec3() : e{0,0,0} {}
vec3(double e1, double e2, double e3) : e{e1,e2,e3} {}
double x() const {return e[0];}
double y() const {return e[1];}
double z() const {return e[2];}
vec3 operator-() const { return vec3(-e[0], -e[1], -e[2]); }
double operator[](int i) const {return e[i];}
double& operator[](int i) {return e[i];}
vec3& operator+=(const vec3 &v) {
e[0] += v.e[0];
e[1] += v.e[1];
e[2] += v.e[2];
return *this;
}
vec3& operator*=(float t) {
e[0] *= t;
e[1] *= t;
e[2] *= t;
return *this;
}
vec3& operator/=(float t) {
return *this *= 1/t;
}
double length_square() const {
return e[0]*e[0] + e[1]*e[1] + e[2]*e[2];
}
double length() const {
return sqrt(e[0]*e[0] + e[1]*e[1] + e[2]*e[2]);
}
static vec3 random(){
return vec3(random_double(), random_double(), random_double());
}
static vec3 random(double min, double max) {
return vec3(random_double(min,max), random_double(min,max), random_double(min,max));
}
bool near_zero() const {
// Return true if the vector is close to zero in all dimensions.
auto s = 1e-8;
return (fabs(e[0]) < s) && (fabs(e[1]) < s) && (fabs(e[2]) < s);
}
};
using point3 = vec3;
using color = vec3;
// Vector Utility Functions
inline std::ostream& operator<<(std::ostream &out, const vec3 &v) {
return out << v.e[0] << ' ' << v.e[1] << ' ' << v.e[2];
}
inline vec3 operator+(const vec3 &u, const vec3 &v) {
return vec3(u.e[0] + v.e[0], u.e[1] + v.e[1], u.e[2] + v.e[2]);
}
inline vec3 operator-(const vec3 &u, const vec3 &v) {
return vec3(u.e[0] - v.e[0], u.e[1] - v.e[1], u.e[2] - v.e[2]);
}
inline vec3 operator*(const vec3 &u, const vec3 &v) {
return vec3(u.e[0] * v.e[0], u.e[1] * v.e[1], u.e[2] * v.e[2]);
}
inline vec3 operator*(double t, const vec3 &v) {
return vec3(t*v.e[0], t*v.e[1], t*v.e[2]);
}
inline vec3 operator*(const vec3 &v, double t) {
return t * v;
}
inline vec3 operator/(vec3 v, double t) {
return (1/t) * v;
}
inline double dot(const vec3 &u, const vec3 &v) {
return u.e[0] * v.e[0]
+ u.e[1] * v.e[1]
+ u.e[2] * v.e[2];
}
inline vec3 cross(const vec3 &u, const vec3 &v) {
return vec3(u.e[1] * v.e[2] - u.e[2] * v.e[1],
u.e[2] * v.e[0] - u.e[0] * v.e[2],
u.e[0] * v.e[1] - u.e[1] * v.e[0]);
}
inline vec3 unit_vector(vec3 v) {
return v / v.length();
}
inline vec3 random_in_unit_sphere() {
while (true) {
auto p = vec3::random(-1,1);
if (p.length() < 1) {
return p;
}
}
}
// does normalizing a random vector that is randomly generated from inside a sphere guarantee then it starts from the point of intersection???
inline vec3 random_unit_vector() {
return unit_vector(random_in_unit_sphere());
}
inline vec3 random_on_hemisphere(const vec3& normal) {
auto ray_bounce = random_unit_vector();
if (dot(normal, ray_bounce) <= 0) {
// if the conditional is satisfied, it means that the ray_bounce produced goes into the object not bounce off of it
// to guarantee that we return a ray that bounces off the object, we invert the ray bounce
return -ray_bounce;
}
return ray_bounce;
}
vec3 reflect(const vec3& v, const vec3& n) {
return v - 2*dot(v,n)*n;
}
vec3 refract(const vec3& incoming_ray, const vec3& normal, const double eta_over_eta_prime) {
auto cos_theta = fmin(dot(-incoming_ray, normal), 1.0);
auto r_perp = eta_over_eta_prime*(incoming_ray+(cos_theta*normal));
auto r_parallel = -sqrt(fabs(1.0-r_perp.length_square()))*normal;
return r_perp + r_parallel;
}
inline vec3 random_in_unit_disk() {
while (true) {
auto p = vec3(random_double(-1,1), random_double(-1,1), 0);
if (p.length_square() < 1)
return p;
}
}
#endif