-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathplot_results_mmd.py
440 lines (297 loc) · 12.8 KB
/
plot_results_mmd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import os
import argparse
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import misc
import inference.mcmc as mcmc
import inference.diagnostics.two_sample as two_sample
import simulators.gaussian as sim
import experiment_descriptor as ed
import util.io
import util.math
import util.plot
root = misc.get_root()
rng = np.random.RandomState(42)
prior = sim.Prior()
model = sim.Model()
true_ps, obs_xs = sim.get_ground_truth()
# for mcmc
thin = 10
n_mcmc_samples = 5000
burnin = 100
def get_true_samples():
"""
Generates MCMC samples from the true posterior.
"""
res_file = os.path.join(root, 'results', 'gauss', 'true_samples')
if os.path.exists(res_file + '.pkl'):
samples = util.io.load(res_file)
else:
log_posterior = lambda t: model.eval([t, obs_xs]) + prior.eval(t)
sampler = mcmc.SliceSampler(true_ps, log_posterior, thin=thin)
sampler.gen(burnin, rng=rng) # burn in
samples = sampler.gen(n_mcmc_samples, rng=rng)
util.io.save(samples, res_file)
return samples
def get_samples_nde(exp_desc):
"""
Generates MCMC samples for a given NDE experiment.
"""
assert isinstance(exp_desc.inf, ed.NDE_Descriptor)
res_file = os.path.join(root, 'results', exp_desc.get_dir(), 'samples')
if os.path.exists(res_file + '.pkl'):
samples = util.io.load(res_file)
else:
exp_dir = os.path.join(root, 'experiments', exp_desc.get_dir(), '0')
if not os.path.exists(exp_dir):
raise misc.NonExistentExperiment(exp_desc)
net = util.io.load(os.path.join(exp_dir, 'model'))
log_posterior = lambda t: net.eval([t, obs_xs]) + prior.eval(t)
sampler = mcmc.SliceSampler(true_ps, log_posterior, thin=thin)
sampler.gen(burnin, rng=rng) # burn in
samples = sampler.gen(n_mcmc_samples, rng=rng)
util.io.save(samples, res_file)
return samples
def get_samples_snl(exp_desc):
"""
Generates MCMC samples for a given SNL experiment.
"""
assert isinstance(exp_desc.inf, ed.SNL_Descriptor)
res_file = os.path.join(root, 'results', exp_desc.get_dir(), 'samples')
if os.path.exists(res_file + '.pkl'):
all_samples = util.io.load(res_file)
else:
exp_dir = os.path.join(root, 'experiments', exp_desc.get_dir(), '0')
if not os.path.exists(exp_dir):
raise misc.NonExistentExperiment(exp_desc)
_, _, all_nets = util.io.load(os.path.join(exp_dir, 'results'))
all_samples = []
for net in all_nets:
net.reset_theano_functions()
log_posterior = lambda t: net.eval([t, obs_xs]) + prior.eval(t)
sampler = mcmc.SliceSampler(true_ps, log_posterior, thin=thin)
sampler.gen(burnin, rng=rng) # burn in
samples = sampler.gen(n_mcmc_samples, rng=rng)
all_samples.append(samples)
util.io.save(all_samples, res_file)
return all_samples
def view_true_samples():
"""
Plots MCMC samples from the true posterior.
"""
samples = get_true_samples()
fig = util.plot.plot_hist_marginals(samples, lims=sim.get_disp_lims(), gt=true_ps)
fig.suptitle('true samples')
plt.plot()
def view_samples_nde():
"""
Plots MCMC samples for all NDE experiments.
"""
for exp_desc in ed.parse(util.io.load_txt('exps/gauss_nl.txt')):
samples = get_samples_nde(exp_desc)
fig = util.plot.plot_hist_marginals(samples, lims=sim.get_disp_lims(), gt=true_ps)
fig.suptitle('NDE, sims = {0}'.format(exp_desc.inf.n_samples))
plt.plot()
def view_samples_snl():
"""
Plots MCMC samples for all SNL experiments.
"""
for exp_desc in ed.parse(util.io.load_txt('exps/gauss_seq.txt')):
if isinstance(exp_desc.inf, ed.SNL_Descriptor):
all_samples = get_samples_snl(exp_desc)
for i, samples in enumerate(all_samples):
fig = util.plot.plot_hist_marginals(samples, lims=sim.get_disp_lims(), gt=true_ps)
fig.suptitle('SNL, round = {0}'.format(i + 1))
plt.plot()
def view_samples_sl():
"""
Plots MCMC samples for all synth likelihood experiments.
"""
for exp_desc in ed.parse(util.io.load_txt('exps/gauss_sl.txt')):
exp_dir = os.path.join(root, 'experiments', exp_desc.get_dir(), '0')
samples, _ = util.io.load(os.path.join(exp_dir, 'results'))
fig = util.plot.plot_hist_marginals(samples, lims=sim.get_disp_lims(), gt=true_ps)
fig.suptitle('Synth Lik, sims = {0}'.format(exp_desc.inf.n_sims))
plt.plot()
def get_mmd_nde(exp_desc):
"""
Calculates the MMD for a given NDE experiment.
"""
assert isinstance(exp_desc.inf, ed.NDE_Descriptor)
res_file = os.path.join(root, 'results', exp_desc.get_dir(), 'mmd')
if os.path.exists(res_file + '.pkl'):
err = util.io.load(res_file)
else:
samples = get_samples_nde(exp_desc)
true_samples = get_true_samples()
scale = util.math.median_distance(true_samples)
err = two_sample.sq_maximum_mean_discrepancy(samples, true_samples, scale=scale)
util.io.save(err, res_file)
return err
def get_mmd_smc(exp_desc):
"""
Calculates the MMD for a given SMC ABC experiment.
"""
assert isinstance(exp_desc.inf, ed.SMC_ABC_Descriptor)
res_file = os.path.join(root, 'results', exp_desc.get_dir(), 'mmd')
if os.path.exists(res_file + '.pkl'):
all_errs, all_n_sims = util.io.load(res_file)
else:
exp_dir = os.path.join(root, 'experiments', exp_desc.get_dir(), '0')
if not os.path.exists(exp_dir):
raise misc.NonExistentExperiment(exp_desc)
true_samples = get_true_samples()
scale = util.math.median_distance(true_samples)
all_samples, all_log_weights, _, _, all_n_sims = util.io.load(os.path.join(exp_dir, 'results'))
all_errs = []
for samples, log_weights in zip(all_samples, all_log_weights):
weights = np.exp(log_weights)
err = two_sample.sq_maximum_mean_discrepancy(xs=samples, ys=true_samples, wxs=weights, scale=scale)
all_errs.append(err)
util.io.save((all_errs, all_n_sims), res_file)
return all_errs, all_n_sims
def get_mmd_sl(exp_desc):
"""
Calculates the MMD for a given synth likelihood experiment.
"""
assert isinstance(exp_desc.inf, ed.SynthLik_Descriptor)
res_file = os.path.join(root, 'results', exp_desc.get_dir(), 'mmd')
if os.path.exists(res_file + '.pkl'):
err, n_sims = util.io.load(res_file)
else:
exp_dir = os.path.join(root, 'experiments', exp_desc.get_dir(), '0')
if not os.path.exists(exp_dir):
raise misc.NonExistentExperiment(exp_desc)
samples, n_sims = util.io.load(os.path.join(exp_dir, 'results'))
true_samples = get_true_samples()
scale = util.math.median_distance(true_samples)
err = two_sample.sq_maximum_mean_discrepancy(samples, true_samples, scale=scale)
util.io.save((err, n_sims), res_file)
return err, n_sims
def get_mmd_postprop(exp_desc):
"""
Calculates the MMD for a given Post Prop experiment.
"""
assert isinstance(exp_desc.inf, ed.PostProp_Descriptor)
res_file = os.path.join(root, 'results', exp_desc.get_dir(), 'mmd')
if os.path.exists(res_file + '.pkl'):
all_prop_errs, post_err = util.io.load(res_file)
else:
exp_dir = os.path.join(root, 'experiments', exp_desc.get_dir(), '0')
if not os.path.exists(exp_dir):
raise misc.NonExistentExperiment(exp_desc)
true_samples = get_true_samples()
scale = util.math.median_distance(true_samples)
all_proposals, posterior, _, _ = util.io.load(os.path.join(exp_dir, 'results'))
all_prop_errs = []
for i, proposal in enumerate(all_proposals[1:]):
samples = proposal.gen(n_mcmc_samples, rng=rng)
prop_err = two_sample.sq_maximum_mean_discrepancy(samples, true_samples, scale=scale)
all_prop_errs.append(prop_err)
samples = posterior.gen(n_mcmc_samples, rng=rng)
post_err = two_sample.sq_maximum_mean_discrepancy(samples, true_samples, scale=scale)
util.io.save((all_prop_errs, post_err), res_file)
return all_prop_errs, post_err
def get_mmd_snpe(exp_desc):
"""
Calculates the MMD for a given SNPE experiment.
"""
assert isinstance(exp_desc.inf, ed.SNPE_MDN_Descriptor)
res_file = os.path.join(root, 'results', exp_desc.get_dir(), 'mmd')
if os.path.exists(res_file + '.pkl'):
all_errs = util.io.load(res_file)
else:
exp_dir = os.path.join(root, 'experiments', exp_desc.get_dir(), '0')
if not os.path.exists(exp_dir):
raise misc.NonExistentExperiment(exp_desc)
true_samples = get_true_samples()
scale = util.math.median_distance(true_samples)
all_posteriors, _, _, _ = util.io.load(os.path.join(exp_dir, 'results'))
all_errs = []
for posterior in all_posteriors[1:]:
samples = posterior.gen(n_mcmc_samples, rng=rng)
err = two_sample.sq_maximum_mean_discrepancy(samples, true_samples, scale=scale)
all_errs.append(err)
util.io.save(all_errs, res_file)
return all_errs
def get_mmd_snl(exp_desc):
"""
Calculates the MMD for a given SNL experiment.
"""
assert isinstance(exp_desc.inf, ed.SNL_Descriptor)
res_file = os.path.join(root, 'results', exp_desc.get_dir(), 'mmd')
if os.path.exists(res_file + '.pkl'):
all_errs = util.io.load(res_file)
else:
true_samples = get_true_samples()
scale = util.math.median_distance(true_samples)
all_samples = get_samples_snl(exp_desc)
all_errs = []
for samples in all_samples:
err = two_sample.sq_maximum_mean_discrepancy(samples, true_samples, scale=scale)
all_errs.append(err)
util.io.save(all_errs, res_file)
return all_errs
def plot_results():
# SMC
exp_desc = ed.parse(util.io.load_txt('exps/gauss_smc.txt'))[0]
all_mmd_smc, all_n_sims_smc = get_mmd_smc(exp_desc)
# SL
all_mmd_slk = []
all_n_sims_slk = []
for exp_desc in ed.parse(util.io.load_txt('exps/gauss_sl.txt')):
mmd, n_sims = get_mmd_sl(exp_desc)
all_mmd_slk.append(mmd)
all_n_sims_slk.append(n_sims)
# NDE
all_mmd_nde = []
all_n_sims_nde = []
for exp_desc in ed.parse(util.io.load_txt('exps/gauss_nl.txt')):
all_mmd_nde.append(get_mmd_nde(exp_desc))
all_n_sims_nde.append(exp_desc.inf.n_samples)
all_mmd_ppr = None
all_n_sims_ppr = None
all_mmd_snp = None
all_n_sims_snp = None
all_mmd_snl = None
all_n_sims_snl = None
for exp_desc in ed.parse(util.io.load_txt('exps/gauss_seq.txt')):
# Post Prop
if isinstance(exp_desc.inf, ed.PostProp_Descriptor):
all_prop_mmd, post_mmd = get_mmd_postprop(exp_desc)
all_mmd_ppr = all_prop_mmd + [post_mmd]
all_n_sims_ppr = [(i + 1) * exp_desc.inf.n_samples_p for i in xrange(len(all_prop_mmd))]
all_n_sims_ppr.append(all_n_sims_ppr[-1] + exp_desc.inf.n_samples_f)
# SNPE
if isinstance(exp_desc.inf, ed.SNPE_MDN_Descriptor):
all_mmd_snp = get_mmd_snpe(exp_desc)
all_n_sims_snp = [(i + 1) * exp_desc.inf.n_samples for i in xrange(exp_desc.inf.n_rounds)]
# SNL
if isinstance(exp_desc.inf, ed.SNL_Descriptor):
all_mmd_snl = get_mmd_snl(exp_desc)
all_n_sims_snl = [(i + 1) * exp_desc.inf.n_samples for i in xrange(exp_desc.inf.n_rounds)]
matplotlib.rc('text', usetex=True)
matplotlib.rc('font', size=16)
all_n_sims = np.concatenate([all_n_sims_slk, all_n_sims_smc, all_n_sims_ppr, all_n_sims_snp, all_n_sims_nde, all_n_sims_snl])
min_n_sims = np.min(all_n_sims)
max_n_sims = np.max(all_n_sims)
fig, ax = plt.subplots(1, 1)
ax.semilogx(all_n_sims_smc, np.sqrt(all_mmd_smc), 'v:', color='y', label='SMC ABC')
ax.semilogx(all_n_sims_slk, np.sqrt(all_mmd_slk), 'D:', color='maroon', label='SL')
ax.semilogx(all_n_sims_ppr, np.sqrt(all_mmd_ppr), '>:', color='c', label='SNPE-A')
ax.semilogx(all_n_sims_snp, np.sqrt(all_mmd_snp), 'p:', color='g', label='SNPE-B')
ax.semilogx(all_n_sims_nde, np.sqrt(all_mmd_nde), 's:', color='b', label='NL')
ax.semilogx(all_n_sims_snl, np.sqrt(all_mmd_snl), 'o:', color='r', label='SNL')
ax.set_xlabel('Number of simulations (log scale)')
ax.set_ylabel('Maximum Mean Discrepancy')
ax.set_xlim([min_n_sims * 10 ** (-0.2), max_n_sims * 10 ** 0.2])
ax.set_ylim([0.0, ax.get_ylim()[1]])
ax.legend(fontsize=14)
plt.show()
def main():
parser = argparse.ArgumentParser(description='Plotting the results for the MMD experiment.')
parser.add_argument('sim', type=str, choices=['gauss'], help='simulator')
plot_results()
if __name__ == '__main__':
main()