-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathplot_results_gof.py
298 lines (199 loc) · 7.92 KB
/
plot_results_gof.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import os
import argparse
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import misc
import inference.diagnostics.two_sample as two_sample
import experiment_descriptor as ed
import pdfs
import util.io
import util.math
import util.plot
root = misc.get_root()
n_samples = 5000
g_true_ps = None
g_true_samples = None
g_scale = None
sim = None
def get_truth():
"""
Returns the true params, samples from the true params, and a scale for mmd.
Saves results in global variables so as to do work only once.
"""
global g_true_ps, g_true_samples, g_scale
if g_true_ps is None or g_true_samples is None or g_scale is None:
g_true_ps, _ = sim.get_ground_truth()
g_true_samples = sim.get_ground_truth_sims(n_samples)
g_scale = util.math.median_distance(g_true_samples)
return g_true_ps, g_true_samples, g_scale
def get_disp_lims():
"""
Returns display limits for likelihood samples calculated from true samples.
"""
_, true_samples, _ = get_truth()
lims = np.array([np.min(true_samples, axis=0), np.max(true_samples, axis=0)])
diff = lims[1] - lims[0]
lims[0] -= 0.1 * diff
lims[1] += 0.1 * diff
lims = lims.T
return lims
def view_true_samples(use_lims=True):
"""
Plots samples from the true likelihood.
"""
_, true_samples, _ = get_truth()
_, obs_xs = sim.get_ground_truth()
lims = get_disp_lims() if use_lims else None
fig = util.plot.plot_hist_marginals(true_samples, lims=lims, gt=obs_xs)
fig.suptitle('true samples')
plt.plot()
def view_samples_nde(sim_name, which=None, use_lims=True):
"""
Plots likelihood samples for all NDE models.
"""
true_ps, obs_xs = sim.get_ground_truth()
lims = get_disp_lims() if use_lims else None
for exp_desc in ed.parse(util.io.load_txt('exps/{0}_nl.txt'.format(sim_name))):
if which is not None and exp_desc.inf.n_samples != which:
continue
exp_dir = os.path.join(root, 'experiments', exp_desc.get_dir(), '0')
net = util.io.load(os.path.join(exp_dir, 'model'))
samples = net.gen(true_ps, n_samples)
fig = util.plot.plot_hist_marginals(samples, lims=lims, gt=obs_xs)
fig.suptitle('NDE, sims = {0}'.format(exp_desc.inf.n_samples))
plt.plot()
def view_samples_snl(sim_name, which=None, use_lims=True):
"""
Plots likelihood samples for all SNL models.
"""
true_ps, obs_xs = sim.get_ground_truth()
lims = get_disp_lims() if use_lims else None
for exp_desc in ed.parse(util.io.load_txt('exps/{0}_seq.txt'.format(sim_name))):
if isinstance(exp_desc.inf, ed.SNL_Descriptor):
exp_dir = os.path.join(root, 'experiments', exp_desc.get_dir(), '0')
_, _, all_nets = util.io.load(os.path.join(exp_dir, 'results'))
for i, net in enumerate(all_nets):
if which is not None and i != which - 1:
continue
net.reset_theano_functions()
samples = net.gen(true_ps, n_samples)
fig = util.plot.plot_hist_marginals(samples, lims=lims, gt=obs_xs)
fig.suptitle('SNL, round = {0}'.format(i + 1))
plt.plot()
def calc_mmd(model):
"""
Calculates MMD between true samples and a given likelihood model.
"""
_, true_samples, scale = get_truth()
samples = model.gen(true_samples.shape[0], rng=np.random.RandomState(42))
return two_sample.sq_maximum_mean_discrepancy(samples, true_samples, scale=scale)
def calc_mmd_cond(net):
"""
Calculates MMD between true samples and a given conditional likelihood model.
"""
true_ps, true_samples, scale = get_truth()
samples = net.gen(true_ps, true_samples.shape[0], rng=np.random.RandomState(42))
return two_sample.sq_maximum_mean_discrepancy(samples, true_samples, scale=scale)
def get_err_gaussian(sim_name):
"""
Calculates the error for a gaussian fit.
"""
res_file = os.path.join(root, 'results', translate_sim_name(sim_name), 'other', 'gaussian_lik_mmd')
if os.path.exists(res_file + '.pkl'):
err = util.io.load(res_file)
else:
_, true_samples, _ = get_truth()
gauss = pdfs.fit_gaussian(true_samples)
err = calc_mmd(gauss)
util.io.save(err, res_file)
return err
def get_err_nde(exp_desc):
"""
Calculates the error for a given NDE experiment.
"""
assert isinstance(exp_desc.inf, ed.NDE_Descriptor)
res_file = os.path.join(root, 'results', exp_desc.get_dir(), 'lik_mmd')
if os.path.exists(res_file + '.pkl'):
err = util.io.load(res_file)
else:
exp_dir = os.path.join(root, 'experiments', exp_desc.get_dir(), '0')
if not os.path.exists(exp_dir):
raise misc.NonExistentExperiment(exp_desc)
net = util.io.load(os.path.join(exp_dir, 'model'))
err = calc_mmd_cond(net)
util.io.save(err, res_file)
return err
def get_err_snl(exp_desc):
"""
Calculates the error for a given SNL experiment.
"""
assert isinstance(exp_desc.inf, ed.SNL_Descriptor)
res_file = os.path.join(root, 'results', exp_desc.get_dir(), 'lik_mmd')
if os.path.exists(res_file + '.pkl'):
all_errs = util.io.load(res_file)
else:
exp_dir = os.path.join(root, 'experiments', exp_desc.get_dir(), '0')
if not os.path.exists(exp_dir):
raise misc.NonExistentExperiment(exp_desc)
_, _, all_nets = util.io.load(os.path.join(exp_dir, 'results'))
all_errs = []
for net in all_nets:
net.reset_theano_functions()
all_errs.append(calc_mmd_cond(net))
util.io.save(all_errs, res_file)
return all_errs
def translate_sim_name(sim_name):
"""
Translates the simulator name from its abbreviation to the full name.
"""
if sim_name == 'lv':
return 'lotka_volterra'
elif sim_name == 'hh':
return 'hodgkin_huxley'
else:
return sim_name
def plot_results(sim_name):
"""
Plots all results for a given simulator and kind of error.
"""
global sim
sim = misc.get_simulator(translate_sim_name(sim_name))
# gaussian
err_gauss = get_err_gaussian(sim_name)
err_gauss = max(err_gauss, 0.0)
# NDE
all_err_nde = []
all_n_sims_nde = []
for exp_desc in ed.parse(util.io.load_txt('exps/{0}_nl.txt'.format(sim_name))):
all_err_nde.append(get_err_nde(exp_desc))
all_n_sims_nde.append(exp_desc.inf.n_samples)
all_err_snl = None
all_n_sims_snl = None
for exp_desc in ed.parse(util.io.load_txt('exps/{0}_seq.txt'.format(sim_name))):
# SNL
if isinstance(exp_desc.inf, ed.SNL_Descriptor):
all_err_snl = get_err_snl(exp_desc)
all_n_sims_snl = [(i + 1) * exp_desc.inf.n_samples for i in xrange(exp_desc.inf.n_rounds)]
matplotlib.rc('text', usetex=True)
matplotlib.rc('font', size=16)
all_n_sims = np.concatenate([all_n_sims_nde, all_n_sims_snl])
min_n_sims = np.min(all_n_sims)
max_n_sims = np.max(all_n_sims)
fig, ax = plt.subplots(1, 1)
ax.semilogx(all_n_sims_nde, np.sqrt(all_err_nde), 's:', color='b', label='NL')
ax.semilogx(all_n_sims_snl, np.sqrt(all_err_snl), 'o:', color='r', label='SNL')
ax.axhline(np.sqrt(err_gauss), linestyle='--', color='k', label='Gaussian')
ax.set_xlabel('Number of simulations (log scale)')
ax.set_ylabel('MMD')
ax.set_xlim([min_n_sims * 10 ** (-0.2), max_n_sims * 10 ** 0.2])
ax.set_ylim([-0.1 if sim_name == 'gauss' else 0.0, ax.get_ylim()[1]])
ax.legend(fontsize=14, loc='upper right' if sim_name == 'gauss' else 'lower right')
plt.show()
def main():
parser = argparse.ArgumentParser(description='Plotting the results for the likelihood goodness of fit experiment.')
parser.add_argument('sim', type=str, choices=['gauss', 'mg1', 'lv', 'hh'], help='simulator')
args = parser.parse_args()
plot_results(args.sim)
if __name__ == '__main__':
main()