-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathArrays.txt
1285 lines (1119 loc) · 40.9 KB
/
Arrays.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
SOLUTIONS OF THESE QUESTIONS ARE EITHER ON GFG OR ON LEETCODE.
---------------------------------------ARRAYS-----------------------------------------
1. Kth smallest element array in { AvgTime: O(N), S(1) }
Time Complexity Analysis:
Discard half each time->
The average time complexity is n + n/2 + n/4 + ... + 8 + 4 + 2 + 1.
It is a geometric progression of form an=a1*r^(n-1) where a1 is 1 and r is 2.
The total count of the progression is log2n (log base 2 of 2*n).
Formula for sum = { a * (1 - r^n)/(1 - r) }
The sum is 1*(1 - 2^log2n)/(1 - 2) = 1*(1 - 2n)/(1 - 2) = 2n - 1.
So the time complexity is O(2n - 1) which can be considered as O(n).
#Always Dry run to understand better for this question and refer to GFG article
and for kth Largest we can pass (arr.length-k+1)instead of k
public static int kthSmallest(int[] arr, int l, int r, int k)
{
if(k>0 && k<=r-l+1){
int pos=randomPartition(arr,l,r);
if(pos-l==k-1){
return arr[pos];
}
if(pos-l>k-1){
return kthSmallest(arr,l,pos-1,k);
}
return kthSmallest(arr,pos+1,r,k-pos+l-1); //value of k is changed for this region because between that region suppose if k=5
//then for that region k will not be that smallest it would be less smaller. say k=1
}
return Integer.MAX_VALUE;
}
public static int randomPartition(int[]arr,int l,int r){
int n=r-l;
int pivot=(int)(Math.random()*n);
swap(arr,l+pivot,r);
return partition(arr,l,r);
}
public static void swap(int[]arr,int l,int r){
int temp=arr[l];
arr[l]=arr[r];
arr[r]=temp;
}
public static int partition(int[]arr,int l,int r){
int x=arr[r],i=l;
for(int j=l;j<=r-1;j++){
if(arr[j]<=x){
swap(arr,i,j);
i++;
}
}
swap(arr,i,r);
return i;
}
----------------------------------------------
2. Sort an array of 0s, 1s and 2s
Approach-> take 3 couters c0,c1,c2 to count 0s,1s and 2s and then put in array accordingly
or
public void sortColors(int[]nums){
int lo=0;
int hi=nums.length-1;
int mid=0;
int temp;
while(mid<=hi){
switch(nums[mid]){
case 0:{
swap(nums[lo],nums[mid]);
lo++;
mid++;
break;
}
case 1:{
mid++;
break;
}
case 2:{
swap(nums[mid],nums[hi]);
hi--;
break;
}
}
}
}
----------------------------------------------
3. Kadane's Algorithm
int maxSubarraySum(int arr[], int n){
int maxSoFar=arr[0]; //overall best
int maxEndHere=arr[0]; //current best
for(int i=1;i<n;i++){
maxEndHere=Math.max(maxEndHere+arr[i],arr[i]);
maxSoFar=Math.max(maxSoFar,maxEndHere);
}
return maxSoFar;
}
-> Maximum Sum Circular Subarray (LC-918)
Intuition: So there can be two cases
x-> part of maximum sum subarray, abcd are just other numbers.
i) abcdxxxxabcd
ii) xxxxabcdxxxx
So, with the circular array, there are only two ways the sum can be found. The first is that the max sum is found by iterating through the array in the forward direction once. The second is that the sum requires wrapping around the array. The forward direction is easy - that's the max sum for the non-circular problem.
For the wrap around case, the sequence for the max sum must contain every value in the array except for those that are in the minimum subarray. So to compute that, sum the entire array and subtract off the sum of the min sequence.
public int maxSubarraySumCircular(int[] nums) {
int currMax = nums[0];
int overAllMax = nums[0];
int currMin = nums[0];
int overAllMin = nums[0];
int total = nums[0];
for(int i=1;i<nums.length;i++){
total += nums[i];
currMax = Math.max(currMax+nums[i],nums[i]);
currMin = Math.min(currMin+nums[i],nums[i]);
overAllMax = Math.max(overAllMax,currMax);
overAllMin = Math.min(overAllMin,currMin);
}
if(overAllMax<0){
return overAllMax;
}else{
return Math.max(overAllMax,total-overAllMin);
}
}
----------------------------------------------
4. Minimize the heights
int getMinDiff(int[] arr, int n, int k) {
//here in this question we have to minimize the maximum(minmax) and maximize the minimum(maxmin) hence find minimum difference, here we don't need that any value less than (maxmin) and any value greater than (minmax)
//increase the smaller value and decrease the bigger value.
Arrays.sort(arr);
int ans=arr[n-1]-arr[0]; //max diff possible
int first=arr[0]+k; //have this choice only (maxmin)
int last = arr[n-1]-k; //have this choice only (minmax)
//handling middle elements
for(int i=1;i<n;i++){
if(arr[i]>=k){ //since height should be non-negative
//we are taking adjacent because only adjacent will give the smallest difference.
int mn=Math.min(first,arr[i]-k);
int mx=Math.max(last,arr[i-1]+k);
ans=Math.min(ans,mx-mn);
}
}
return ans;
}
----------------------------------------------
5. Minimum no. of jumps
static int minJumps(int[] arr){
if (arr[0] >= arr.length - 1) {
return 1;
}
if (arr[0] == 0) {
return -1;
}
int jumps = 0;
int steps = arr[0] - 1;
int maxrange = arr[0];
int idx = 0; //it is the index from where i am deciding to take a new jump
boolean flag = false; //to handle condition when we can't take move on '0'
for (int i = 1; i < arr.length; i++) {
if (arr[i] != 0) {
int range = i + arr[i];
if (range >= arr.length - 1) {
jumps += 2;
break;
}
if (range > maxrange) {
maxrange = range;
idx = i;
flag = true;
}
}
if (steps == 0) {
if (!flag && arr[i] == 0) {
//because if flag is not updated to true then we know that we didn't get a value from which we can overhead the given range. and if this happended then when we land on a value 0 then we will not be able to step further for eg) 5 4 3 2 1 0 .
return -1;
}
//did these changes in steps because suppose we get the number where we have to select for next jump but that number's step will initiate when previous steps will become 0. and also we have to handle new steps
steps = arr[idx] - (i - idx);
jumps++;
flag = false;
}
steps--;
}
return jumps;
}
-------------------->
If we know that we will reach the end everytime then we can use below greedy approach
The main idea is based on greedy. Let's say the range of the current jump is [curBegin, curEnd], curFarthest is the farthest point that all points in [curBegin, curEnd] can reach. Once the current point reaches curEnd, then trigger another jump, and set the new curEnd with curFarthest, then keep the above steps, as the following:
public int jump(int[] A) {
int jumps = 0, curEnd = 0, curFarthest = 0;
for (int i = 0; i < A.length - 1; i++) {
curFarthest = Math.max(curFarthest, i + A[i]);
if (i == curEnd) {
jumps++;
curEnd = curFarthest;
}
}
return jumps;
}
--------------------------------------------------------------------------------
6. Find the duplicate number in array of size n+1 having elements in range [1,n] in O(n) S(1)
FLoyd cycle detection algo----->hare and tortoise
public int findDuplicate(int[] nums) {
int slow=nums[0];
int fast=nums[0];
//used do while because slow and fast are already equal due to above code..
do{
slow=nums[slow];
fast=nums[nums[fast]];
}while(slow!=fast);
fast=nums[0];
while(fast!=slow){
slow=nums[slow];
fast=nums[fast];
}
return slow;
}
--------------------------------------------------------------------------------
7. Merge two sorted arrays without Extra space
public void merge(int arr1[], int arr2[], int n, int m) {
int i=n-1;
int j=0;
while(i>=0 && j<m){
if(arr1[i]>arr2[j]){
int temp=arr1[i];
arr1[i]=arr2[j];
arr2[j]=temp;
}
i--;
j++;
}
Arrays.sort(arr1);
Arrays.sort(arr2);
}
--------------------------------------------------------------------------------
8. Merge intervals
public static ArrayList<pair> overlappedInterval(ArrayList<pair> vec, int n)
{
Collections.sort(vec,new Comparator<pair>(){
public int compare(pair p1,pair p2){
return p1.first-p2.first;
}
});
pair start=vec.get(0);
int idx=0; //taken to maintain S(1){constant space}
for(int i=1;i<vec.size();i++){
pair list=vec.get(i);
if(list.first<=start.second){
start.second=Math.max(start.second,list.second);
}else{
idx++;
start=vec.get(idx);
start.first=list.first;
start.second=list.second;
}
}
while(vec.size()!=idx+1){
vec.remove(vec.size()-1);
}
return vec;
}
-> Remove Covered Intervals (LC-1288)
public int removeCoveredIntervals(int[][] intervals) {
Arrays.sort(intervals,(a,b)->(a[0]-b[0]));
int j=1;
int n = intervals.length;
int count=0;
while(j<n){
int[] prev = intervals[j-1];
int[] curr = intervals[j];
if(curr[0]>prev[0]){
if(curr[1]<=prev[1]){
curr[0]=prev[0];
curr[1]=prev[1];
count++;
}
}else if(curr[0]==prev[0]){
count++;
if(curr[1]<prev[1]){
curr[1]=prev[1];
}
}
j++;
}
return n-count;
}
--------------------------------------------------------------------------------
9. Next Permutation
1 3 5 4 2
-> 1 4 2 3 5
Approach->
i)traverse from reverse and find the break point where arr[i]<arr[i+1] ==>for eg here it is 3 at IDX=1,
ii) again traverse from reverse and find the idx where arr[i]>arr[idx]; here it is element '4' at index=4,
iii) swap '3' with '4' , it becomes=> 1 4 5 3 2
iv) reverse the array from IDX+1 to arr.length-1, for eg in this case 1 4 2 3 5
INTUITION-> we are traversing from reverse because we always get this pattern even if there is only one element in the pattern for eg =>IN 1 2 3 only 3 participate in that pattern (step (i))pattern.
we could replace 3 with 4 but we also want less lexicographically number and for the REVERSE PART we did this because to get the just next permutation we want as lesser rank as possible which can be possible only when we reverse because it is already in descending order following step (i) pattern.
if we couldn't find the break point just reverse the array (it get sorted).
--------------------------------------------------------------------------------
10. Count inversions
static long mergeSort(long[]arr,long[]temp,long left,long right){
long inv_count=0;
if(left<right){
long mid=(left+right)/2;
inv_count+=mergeSort(arr,temp,left,mid);
inv_count+=mergeSort(arr,temp,mid+1,right);
inv_count+=merge(arr,temp,left,mid+1,right);
}
return inv_count;
}
static long merge(long[]arr,long[]temp,long left,long mid,long right){
long count=0;
long i=left;
long k=left;
long j=mid;
while(i<=(mid-1) && j<=right){
if(arr[(int)i]<=arr[(int)j]){
temp[(int)k++]=arr[(int)i++];
}else{
temp[(int)k++]=arr[(int)j++];
count=count+(mid-i); //this will give us the number of elements which
//are right to the current index and already greater in value then the element present in right side tree
//for eg= (2) 3 5 (1) 4 -->(2,1),(3,1),(5,1)
//we take mid here not j because cases like 5(4) has already collected.
}
}
while(j<=right){
temp[(int)k++]=arr[(int)j++];
}
while(i<=(mid-1)){
temp[(int)k++]=arr[(int)i++];
}
for(long idx=left;idx<=right;idx++){
arr[(int)idx]=temp[(int)idx];
}
return count;
}
--------------------------------------------------------------------------------
11. Best time to buy and sell stock
-> we will try to sell at each day and check in the left which day was minimum, to get the max profit.
public int maxProfit(int[] prices) {
int min = prices[0];
int profit=0;
for(int i=1;i<prices.length;i++){
profit = Math.max(profit,prices[i]-min);
min = Math.min(min,prices[i]);
}
return profit;
}
--------------------------------------------------------------------------------
12. Count pairs with given sum
int getPairsCount(int[] arr, int n, int k) {
int ans = 0;
//Used hashmap and add key value acc to their frequencies.
for (int i = 0; i < arr.length; i++) {
if (map.containsKey(k - arr[i])) {
ans += map.get(k - arr[i]);
}
// did this because suppose {1,1,1} and k=2 then if we consider i=0 here then we dont want to count its freq thrice(which includes its current element).
if (arr[i] == k - arr[i]) {
ans--;
}
}
//because every pair is counted twice for eg-> k=6 (1,5),(5,1).
return ans/2;
}
--------------------------------------------------------------------------------
13. Common Elements in three arrays
ArrayList<Integer> list = new ArrayList<Integer>();
while (i < A.length && j < B.length && k < C.length) {
if (A[i] == B[j] && B[j] == C[k]) {
if(list.size()>0) {
if(list.get(list.size()-1)==A[i]) {
}else {
list.add(A[i]);
}
}else {
list.add(A[i]);
}
i++;
j++;
k++;
continue;
}
if (A[i] < B[j]) {
i++;
} else if (B[j] < C[k]) {
j++;
} else {
k++;
}
}
return list; }
--------------------------------------------------------------------------------
14. Rearrange array in alternating positive & negative items with O(1) extra space
public static void rearrange(int[] arr) {
int outofplace = -1;
// when we have negative element at odd place and positive element at even place.
// so this represents that index;
for (int i = 0; i < arr.length; i++) {
if (outofplace >= 0) {
// rotate whenever outofplace element found.
if ((arr[i] >= 0 && arr[outofplace] < 0) || (arr[i] < 0 &&
arr[outofplace] >= 0)) {
rightrotate(arr, outofplace, i);
// it may possible that after rotating when one number shifted to correct place
// then there are 2 or more than 2 elements present that may not be at their // correct position. if not so we have to find outofplace index again
if (i - outofplace >= 2) {
outofplace += 2;
} else {
outofplace = -1;
}
}
} else {
if ((arr[i] >= 0 && i % 2 == 0) || (arr[i] < 0 && i % 2 != 0)) {
outofplace = i;
}
}}}
#) If order doesn't matter then
-> Just partition the array with 0 as pivot
-> now pos = pivot + 1, take neg=0;
-> now keep swapping arr[neg] and arr[pos] and then -> neg+=2, pos++;
--------------------------------------------------------------------------------
15. Subarray with 0 Sum in T(n),S(n)
Approach-> we take a prefix sum array and also took a hashmap and store the prefix array according to their element's frequencies and then check if there is a key which have 2 or more than 2 frequencies or is there any key which is equal to 0 because if key is 0 ->then there must be sum 0 or if key have value 2 or more then it implies some subarray must got sum 0 in between thats why some element is repeating in prefix array.
(***If current sum encountered previously, this means elements between previous sum and current sum makes them 0.)
--------------------------------------------------------------------------------
16. Factorial of a Big number
Approach 1-> Using BigInteger
public static BigInteger Factorial(int n){
BigInteger fact=new BigInteger("1");
for(int i=2;i<=n;i++){
fact=fact.multiply(BigInteger.valueOf(i));
}
return fact;
}
Approach 2-> using Array
while (t-- > 0) {
int n = scn.nextInt();
int[] arr= new int[5000];
int q=2;
int x=0,len=1,num=0;
arr[0]=1;
while(q<=n) {
x=0;
num=0;
while(x<len) {
arr[x]=arr[x]*q;
arr[x]=arr[x]+num;
num=arr[x]/10;
arr[x]=arr[x]%10;
x++;
}
while(num!=0) {
arr[len]=num;
num=num/10;
len++;
}
q++;
}
len--;
while(len>=0) {
System.out.print(arr[len]);
len--;
}
System.out.println();
}
--------------------------------------------------------------------------------
17. Maximum Product subarray -T(N), S(1) -> https://www.youtube.com/watch?v=0d35oJyEous&t=609s
public int maxProduct(int[] nums) {
if(nums.length==1){
return nums[0];
}
int maxproduct=nums[0];
int maxPositive=nums[0];
int maxNegative=nums[0];
int choice1;
int choice2;
int current=0;
for(int i=1;i<nums.length;i++){
current=nums[i];
choice1=maxPositive*current;
choice2=maxNegative*current;
maxPositive=Math.max(current,Math.max(choice1,choice2));
maxNegative=Math.min(current,Math.min(choice1,choice2));
maxproduct=Math.max(maxproduct,Math.max(maxPositive,maxNegative));
}
return maxproduct;
}
--------------------------------------------------------------------------------
18. Longest consecutive subsequence ->T(N),S(N)
{2,6,9,4,5,3,10}->2,3,4,5,6 so the output is 5
->First do Hashing
and then do->
int maxcount=0;
int count=0;
//here max is the maximum element in the array.
for(int i=1;i<=max;i++){
if(map.containsKey(i)){
count++;
}else{
count=0;
}
maxcount=Math.max(maxcount,count);
}
//method 2 slightly different approach
HashSet<Integer> S = new HashSet<Integer>();
int ans = 0;
// Hash all the array elements
for (int i = 0; i < n; ++i)
S.add(arr[i]);
// check each possible sequence from the start
// then update optimal length
for (int i = 0; i < n; ++i)
{
// if current element is the starting
// element of a sequence
if (!S.contains(arr[i] - 1))
{
// Then check for next elements
// in the sequence
int j = arr[i];
while (S.contains(j))
j++;
// update optimal length if this
// length is more
if (ans < j - arr[i])
ans = j - arr[i];
}
}
--------------------------------------------------------------------------------
19. Given an array of size n and a number k, find all elements that appear more than n/k times
T(nk),S(k-1)
-> For better understanding just see the explaination on GFG through diagram you'll understand the intuition.
public static void moreThanNdK(int[] arr, int n, int k) {
if (k < 2)
return;
Tetris[] temp = new Tetris[k - 1];
for (int i = 0; i < k - 1; i++) {
temp[i] = new Tetris();
}
for (int i = 0; i < n; i++) {
int j;
// If arr[i] is already present in the element count array, then increment its count
for (j = 0; j < k - 1; j++) {
if (temp[j].element == arr[i]) {
temp[j].count++;
break;
}
}
if (j == temp.length) {
int l;
// If there is position available in temp[], then place arr[i] in the first
// available position and set count as 1
for (l = 0; l < k - 1; l++) {
if (temp[l].count == 0) {
temp[l].count = 1;
temp[l].element=arr[i];
break;
}
}
// If all the position in the temp[] are filled, then decrease count of every element by 1
if (l == temp.length) {
int m;
for (m = 0; m < k - 1; m++) {
temp[m].count -= 1;
}
}
}
}
for (int i = 0; i < temp.length; i++) {
int actualcount = 0;
for (int j = 0; j < n; j++) {
if (temp[i].element == arr[j]) {
actualcount++;
}
}
if (actualcount > n / k) {
System.out.print(temp[i].element + " ");
}
}
}
static class Tetris {
int element;
int count;
}
--------------------------------------------------------------------------------
20. Leetcode #122 Best time to buy and sell stock II
-> Since it follows Valley Peak approach , so we just have to find the pattern where it is increasing and then add the difference of it to profit which sums upto total profit
1,2,3,4,5 here profit=1+1+1+1=4 {(2-1) + (3-2) + (4-3) + (5-4)}
int diff=0;
for(int i=1;i<prices.length;i++){
if(prices[i]>prices[i-1]){
diff+=prices[i]-prices[i-1];
}
}
return diff;
Another Method->
public int maxProfit(int[] prices) {
int bd=0;
int sd=0;
int profit=0;
for(int i=1;i<prices.length;i++){
if(prices[i]>prices[i-1]){
sd++;
}else{
profit+=prices[sd]-prices[bd];
bd=sd=i;
}
}
profit+=prices[sd]-prices[bd];
return profit;
}
--------------------------------------------------------------------------------
21. Array Subset of another array
Approach-> used two hashmaps an check whether elements of first hashmap are also in second hashmap with same frequency (take a size variable and whenever condition satisfies just increment the size ), at last if size is equal to the size of small hashmap then (array is subset of another subset).
--------------------------------------------------------------------------------
22. Triplet Sum in Array
Approach->
1. Either use a hashmap and for this T(N^2), S(N)
2. Use 3 pointers approach after sorting the array -> T(N^2),S(1)
Similar problem
(3 Sum with Multiplicity LC-923)
M1) Using combinatorics
public int threeSumMulti(int[] arr, int target) {
long result = 0;
long count[] = new long[101];
long mod = 1000000007;
//Couting the occurrence of each number
for(int i: arr) count[i]++;
for(int i=0;i<101;i++){
for(int j=i;j<101;j++){
int k = target - i -j;
if(k<0 || k>100)
continue;
// if all number are same than use nC3
if(i==j && j==k){
result += (count[i]*(count[i]-1)*(count[i]-2))/6;
}
//if first two are same than use nC2 * occurence of k
else if(i==j && j!=k){
result += ((count[i]*(count[i]-1))/2)*count[k];
}
//Last condition if all number ar different
else if(i<j && j<k){
result += (count[i]*count[j]*count[k]);
}
result %= mod;
}
}
return (int)result;
}
M2) Using HashMaps
public int threeSumMulti(int[] A, int target) {
Map<Integer, Integer> map = new HashMap<>();
int res = 0;
int mod = 1000000007;
for (int i = 0; i < A.length; i++) {
res = (res + map.getOrDefault(target - A[i], 0)) % mod;
for (int j = 0; j < i; j++) {
int temp = A[i] + A[j];
map.put(temp, map.getOrDefault(temp, 0) + 1);
}
}
return res;
}
--------------------------------------------------------------------------------
23. Trapping Rain Water
static int trappingWater(int arr[], int n) {
int[]leftMax= new int[n];
int[]rightMax= new int[n];
leftMax[0]=arr[0];
for(int i=1;i<n;i++){
leftMax[i]=Math.max(leftMax[i-1],arr[i]);
}
rightMax[n-1]=arr[n-1];
for(int j=n-2;j>=0;j--){
rightMax[j]=Math.max(rightMax[j+1],arr[j]);
}
int ans=0;
for(int i=0;i<n;i++){
ans+=Math.min(leftMax[i],rightMax[i])-arr[i];
}
return ans;
}
->S(1)
public int trap(int[] height) {
int n=height.length;
int l=0;
int r=n-1;
int left_max=0;
int right_max=0;
int res=0;
while(l<=r){
if(height[l]<=height[r]){
if(left_max<=height[l]){
left_max=height[l];
}else{
res+=left_max-height[l];
}
l++;
}else{
if(right_max<=height[r]){
right_max=height[r];
}else{
res+=right_max-height[r];
}
r--;
}
}
return res;
}
->Not so similar problem
-> Container with most water (LC-11)
public int maxArea(int[] heights) {
int maxArea = 0;
int left = 0;
int right = heights.length - 1;
int maxHeight = 0;
while (left <= right) {
// because the length is always decreasing
// we only need to consider a pair if its height
// is greater than any pair's height we've used so far
if (heights[left] > maxHeight && heights[right] > maxHeight) {
maxHeight = Math.min(heights[left], heights[right]);
maxArea = Math.max(maxArea, maxHeight * (right - left));
}
// move pointers
if (heights[left] == heights[right]) {
left ++;
right --;
} else if (heights[left] < heights[right]) {
left ++;
} else {
right --;
}
}
return maxArea;
}
--------------------------------------------------------------------------------
24. Chocolate Distribution Problem
//Sliding Window Approach
while (t-- > 0) {
int n = scn.nextInt();
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = scn.nextLong();
}
int m = scn.nextInt();
Arrays.sort(arr);
long diff = Integer.MAX_VALUE;
for (int i = 0; i <= n - m; i++) {
long temp = (arr[i + m - 1] - arr[i]);
diff = Math.min(diff, temp);
}
System.out.println(diff);
}
--------------------------------------------------------------------------------
25. Smallest subarray with sum greater than x
public static long sb(long arr[], long n, long x) {
// Initialize current sum and minimum length
long curr_sum = 0;
long ans = n + 1;
// Initialize starting and ending indexes
int start = 0, end = 0;
while (end < n) {
// Keep adding array elements while current sum
// is smaller than or equal to x
while (curr_sum <= x && end < n)
curr_sum += arr[end++];
// If current sum becomes greater than x.
while (curr_sum > x && start < n) {
// Update minimum length if needed
ans=Math.min(ans,end-start);
// remove starting elements
curr_sum -= arr[start++];
}
}
return ans;
}
--------------------------------------------------------------------------------
26. Three way partioning
public void threeWayPartition(int arr[], int a, int b)
{
int low=0;
int mid=0;
int high=arr.length-1;
while(mid<=high){
if(arr[mid]<a){
int temp=arr[mid];
arr[mid]=arr[low];
arr[low]=temp;
low++;
mid++;
}else if(arr[mid]>b){
int temp=arr[high];
arr[high]=arr[mid];
arr[mid]=temp;
high--;
}else{
mid++;
}
}
}
--------------------------------------------------------------------------------
27. Minimum swaps and k together (Find the minimum number of swaps required to bring all the numbers less than or equal to k together.)
public static int minSwap (int arr[], int n, int k) {
//using sliding window approach
int good=0;
for(int i=0;i<n;i++){
if(arr[i]<=k){
good++;
}
}
// we made a window of size (good)
int bad=0;
for(int i=0;i<good;i++){
if(arr[i]>k){
bad++;
}
}
int ans=bad;
for(int i=0,j=good;j<n;i++,j++){
if(arr[i]>k){
bad--;
}
if(arr[j]>k){
bad++;
}
ans=Math.min(ans,bad);
}
return ans;
}
--------------------------------------------------------------------------------
28. Minimum no. of operations needed to make an array palindrome
int i=0;
int j=n-1;
int res=0;
while(i<=j){
if(arr[i]==arr[j]){
i++;
j--;
// If left element is greater, then we merge right two elements because it increases the probability that // the merge part or the sum could be equal to the other right element
}else if(arr[i]<arr[j]){
i++;
arr[i]=arr[i]+arr[i-1];
res++;
}else{
j--;
arr[j]=arr[j]+arr[j+1];
res++;
}
}
return res;
--------------------------------------------------------------------------------
29. Median of two sorted arrays of same size->https://www.youtube.com/watch?v=MHNTl_NvOj0
->https://www.ideserve.co.in/learn/find-median-of-two-sorted-arrays
T(logn) S(1)
private static final int ERROR_INVALID_INPUT = -1;
// change value of this const as per your specific requirement
public int max(int a, int b)
{
if (a > b) return a;
return b;
}
public int min(int a, int b)
{
if (a < b) return a;
return b;
}
private double findMedian(int[] array, int startIndex, int endIndex)
{
int indexDiff = (endIndex - startIndex);
if (indexDiff % 2 == 0) // we are looking at odd number of elements
{
return array[startIndex + (indexDiff/2)];
}
else
{
return 1.0*(array[startIndex + (indexDiff/2)] + array[startIndex + (indexDiff/2) + 1])/2;
}
}
// a: 1,2,5,11,15 // b: 3 4 13 17 18
public double findMedianSortedArrays(int[] a, int[] b, int startIndexA, int endIndexA, int startIndexB, int endIndexB)
{
if ((endIndexA - startIndexA < 0) || ((endIndexB - startIndexB < 0)))
{
System.out.println("Invalid Input.");
return ERROR_INVALID_INPUT;
}
if ((endIndexA - startIndexA == 0) && ((endIndexB - startIndexB == 0)))
{
return (a[0] + b[0])/2;
}