-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathStdRandom.java
378 lines (339 loc) · 12 KB
/
StdRandom.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
/*************************************************************************
* Compilation: javac StdRandom.java
* Execution: java StdRandom
* Dependencies: StdOut.java
*
* A library of static methods to generate pseudo-random numbers from
* different distributions (bernoulli, uniform, gaussian, discrete,
* and exponential). Also includes a method for shuffling an array.
*
*
* % java StdRandom 5
* seed = 1316600602069
* 59 16.81826 true 8.83954 0
* 32 91.32098 true 9.11026 0
* 35 10.11874 true 8.95396 3
* 92 32.88401 true 8.87089 0
* 72 92.55791 true 9.46241 0
*
* % java StdRandom 5
* seed = 1316600616575
* 96 60.17070 true 8.72821 0
* 79 32.01607 true 8.58159 0
* 81 59.49065 true 9.10423 1
* 96 51.65818 true 9.02102 0
* 99 17.55771 true 8.99762 0
*
* % java StdRandom 5 1316600616575
* seed = 1316600616575
* 96 60.17070 true 8.72821 0
* 79 32.01607 true 8.58159 0
* 81 59.49065 true 9.10423 1
* 96 51.65818 true 9.02102 0
* 99 17.55771 true 8.99762 0
*
*
* Remark
* ------
* - Relies on randomness of nextDouble() method in java.util.Random
* to generate pseudorandom numbers in [0, 1).
*
* - This library allows you to set and get the pseudorandom number seed.
*
* - See http://www.honeylocust.com/RngPack/ for an industrial
* strength random number generator in Java.
*
*************************************************************************/
import java.util.Random;
/**
* <i>Standard random</i>. This class provides methods for generating
* random number from various distributions.
* <p>
* For additional documentation, see <a href="http://introcs.cs.princeton.edu/22library">Section 2.2</a> of
* <i>Introduction to Programming in Java: An Interdisciplinary Approach</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public final class StdRandom {
private static Random random; // pseudo-random number generator
private static long seed; // pseudo-random number generator seed
// static initializer
static {
// this is how the seed was set in Java 1.4
seed = System.currentTimeMillis();
random = new Random(seed);
}
// don't instantiate
private StdRandom() { }
/**
* Sets the seed of the psedurandom number generator.
*/
public static void setSeed(long s) {
seed = s;
random = new Random(seed);
}
/**
* Returns the seed of the psedurandom number generator.
*/
public static long getSeed() {
return seed;
}
/**
* Return real number uniformly in [0, 1).
*/
public static double uniform() {
return random.nextDouble();
}
/**
* Returns an integer uniformly between 0 (inclusive) and N (exclusive).
* @throws IllegalArgumentException if <tt>N <= 0</tt>
*/
public static int uniform(int N) {
if (N <= 0) throw new IllegalArgumentException("Parameter N must be positive");
return random.nextInt(N);
}
///////////////////////////////////////////////////////////////////////////
// STATIC METHODS BELOW RELY ON JAVA.UTIL.RANDOM ONLY INDIRECTLY VIA
// THE STATIC METHODS ABOVE.
///////////////////////////////////////////////////////////////////////////
/**
* Returns a real number uniformly in [0, 1).
* @deprecated clearer to use {@link #uniform()}
*/
public static double random() {
return uniform();
}
/**
* Returns an integer uniformly in [a, b).
* @throws IllegalArgumentException if <tt>b <= a</tt>
* @throws IllegalArgumentException if <tt>b - a >= Integer.MAX_VALUE</tt>
*/
public static int uniform(int a, int b) {
if (b <= a) throw new IllegalArgumentException("Invalid range");
if ((long) b - a >= Integer.MAX_VALUE) throw new IllegalArgumentException("Invalid range");
return a + uniform(b - a);
}
/**
* Returns a real number uniformly in [a, b).
* @throws IllegalArgumentException unless <tt>a < b</tt>
*/
public static double uniform(double a, double b) {
if (!(a < b)) throw new IllegalArgumentException("Invalid range");
return a + uniform() * (b-a);
}
/**
* Returns a boolean, which is true with probability p, and false otherwise.
* @throws IllegalArgumentException unless <tt>p >= 0.0</tt> and <tt>p <= 1.0</tt>
*/
public static boolean bernoulli(double p) {
if (!(p >= 0.0 && p <= 1.0))
throw new IllegalArgumentException("Probability must be between 0.0 and 1.0");
return uniform() < p;
}
/**
* Returns a boolean, which is true with probability .5, and false otherwise.
*/
public static boolean bernoulli() {
return bernoulli(0.5);
}
/**
* Returns a real number with a standard Gaussian distribution.
*/
public static double gaussian() {
// use the polar form of the Box-Muller transform
double r, x, y;
do {
x = uniform(-1.0, 1.0);
y = uniform(-1.0, 1.0);
r = x*x + y*y;
} while (r >= 1 || r == 0);
return x * Math.sqrt(-2 * Math.log(r) / r);
// Remark: y * Math.sqrt(-2 * Math.log(r) / r)
// is an independent random gaussian
}
/**
* Returns a real number from a gaussian distribution with given mean and stddev
*/
public static double gaussian(double mean, double stddev) {
return mean + stddev * gaussian();
}
/**
* Returns an integer with a geometric distribution with mean 1/p.
* @throws IllegalArgumentException unless <tt>p >= 0.0</tt> and <tt>p <= 1.0</tt>
*/
public static int geometric(double p) {
if (!(p >= 0.0 && p <= 1.0))
throw new IllegalArgumentException("Probability must be between 0.0 and 1.0");
// using algorithm given by Knuth
return (int) Math.ceil(Math.log(uniform()) / Math.log(1.0 - p));
}
/**
* Return an integer with a Poisson distribution with mean lambda.
* @throws IllegalArgumentException unless <tt>lambda > 0.0</tt> and not infinite
*/
public static int poisson(double lambda) {
if (!(lambda > 0.0))
throw new IllegalArgumentException("Parameter lambda must be positive");
if (Double.isInfinite(lambda))
throw new IllegalArgumentException("Parameter lambda must not be infinite");
// using algorithm given by Knuth
// see http://en.wikipedia.org/wiki/Poisson_distribution
int k = 0;
double p = 1.0;
double L = Math.exp(-lambda);
do {
k++;
p *= uniform();
} while (p >= L);
return k-1;
}
/**
* Returns a real number with a Pareto distribution with parameter alpha.
* @throws IllegalArgumentException unless <tt>alpha > 0.0</tt>
*/
public static double pareto(double alpha) {
if (!(alpha > 0.0))
throw new IllegalArgumentException("Shape parameter alpha must be positive");
return Math.pow(1 - uniform(), -1.0/alpha) - 1.0;
}
/**
* Returns a real number with a Cauchy distribution.
*/
public static double cauchy() {
return Math.tan(Math.PI * (uniform() - 0.5));
}
/**
* Returns a number from a discrete distribution: i with probability a[i].
* throws IllegalArgumentException if sum of array entries is not (very nearly) equal to <tt>1.0</tt>
* throws IllegalArgumentException unless <tt>a[i] >= 0.0</tt> for each index <tt>i</tt>
*/
public static int discrete(double[] a) {
double EPSILON = 1E-14;
double sum = 0.0;
for (int i = 0; i < a.length; i++) {
if (!(a[i] >= 0.0)) throw new IllegalArgumentException("array entry " + i + " must be nonnegative: " + a[i]);
sum = sum + a[i];
}
if (sum > 1.0 + EPSILON || sum < 1.0 - EPSILON)
throw new IllegalArgumentException("sum of array entries does not approximately equal 1.0: " + sum);
// the for loop may not return a value when both r is (nearly) 1.0 and when the
// cumulative sum is less than 1.0 (as a result of floating-point roundoff error)
while (true) {
double r = uniform();
sum = 0.0;
for (int i = 0; i < a.length; i++) {
sum = sum + a[i];
if (sum > r) return i;
}
}
}
/**
* Returns a real number from an exponential distribution with rate lambda.
* @throws IllegalArgumentException unless <tt>lambda > 0.0</tt>
*/
public static double exp(double lambda) {
if (!(lambda > 0.0))
throw new IllegalArgumentException("Rate lambda must be positive");
return -Math.log(1 - uniform()) / lambda;
}
/**
* Rearrange the elements of an array in random order.
*/
public static void shuffle(Object[] a) {
int N = a.length;
for (int i = 0; i < N; i++) {
int r = i + uniform(N-i); // between i and N-1
Object temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
/**
* Rearrange the elements of a double array in random order.
*/
public static void shuffle(double[] a) {
int N = a.length;
for (int i = 0; i < N; i++) {
int r = i + uniform(N-i); // between i and N-1
double temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
/**
* Rearrange the elements of an int array in random order.
*/
public static void shuffle(int[] a) {
int N = a.length;
for (int i = 0; i < N; i++) {
int r = i + uniform(N-i); // between i and N-1
int temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
/**
* Rearrange the elements of the subarray a[lo..hi] in random order.
*/
public static void shuffle(Object[] a, int lo, int hi) {
if (lo < 0 || lo > hi || hi >= a.length) {
throw new IndexOutOfBoundsException("Illegal subarray range");
}
for (int i = lo; i <= hi; i++) {
int r = i + uniform(hi-i+1); // between i and hi
Object temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
/**
* Rearrange the elements of the subarray a[lo..hi] in random order.
*/
public static void shuffle(double[] a, int lo, int hi) {
if (lo < 0 || lo > hi || hi >= a.length) {
throw new IndexOutOfBoundsException("Illegal subarray range");
}
for (int i = lo; i <= hi; i++) {
int r = i + uniform(hi-i+1); // between i and hi
double temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
/**
* Rearrange the elements of the subarray a[lo..hi] in random order.
*/
public static void shuffle(int[] a, int lo, int hi) {
if (lo < 0 || lo > hi || hi >= a.length) {
throw new IndexOutOfBoundsException("Illegal subarray range");
}
for (int i = lo; i <= hi; i++) {
int r = i + uniform(hi-i+1); // between i and hi
int temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
/**
* Unit test.
*/
public static void main(String[] args) {
int N = Integer.parseInt(args[0]);
if (args.length == 2) StdRandom.setSeed(Long.parseLong(args[1]));
double[] t = { .5, .3, .1, .1 };
StdOut.println("seed = " + StdRandom.getSeed());
for (int i = 0; i < N; i++) {
StdOut.printf("%2d " , uniform(100));
StdOut.printf("%8.5f ", uniform(10.0, 99.0));
StdOut.printf("%5b " , bernoulli(.5));
StdOut.printf("%7.5f ", gaussian(9.0, .2));
StdOut.printf("%2d " , discrete(t));
StdOut.println();
}
String[] a = "A B C D E F G".split(" ");
for (String s : a)
StdOut.print(s + " ");
StdOut.println();
}
}