-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathneuro_dataset.py
523 lines (439 loc) · 21.6 KB
/
neuro_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
"""This module contains classes, functions and a program (main) for reading neuromorphic datasets, processing the data and then saving into a caffe lmdb"""
import glob
import math
import os
import cv2
import numpy as np
from scipy import ndimage
from scipy.io import savemat
import caffe_lmdb
import datum_pb2
import eventvision as ev
import timer
def stabilize(td):
"""Compensate for motion of the ATIS sensor during recording of the Neuromorphic datasets
Applies to the N-MNIST and N-Caltech101 datasets.
The image motion is originally induced by egorotation of the ATIS sensor
td: eventvision.Events
"""
assert isinstance(td, ev.Events)
def correct_saccade1(data):
data.x -= np.rint(3.5 * data.ts / 105e3).astype(np.uint16)
data.y -= np.rint(7 * data.ts / 105e3).astype(np.uint16)
return data
def correct_saccade2(data):
data.x -= np.rint(3.5 + 3.5 * (data.ts - 105e3) / 105e3).astype(np.uint16)
data.y -= np.rint(7 - 7 * (data.ts - 105e3) / 105e3).astype(np.uint16)
return data
def correct_saccade3(data):
data.x -= np.rint(7 - 7 * (data.ts - 210e3) / 105e3).astype(np.uint16)
return data
copy = np.piecewise(td.data,\
[td.data.ts <= 105e3, (td.data.ts > 105e3) & (td.data.ts <= 210e3), (td.data.ts > 210e3)],\
[correct_saccade1, correct_saccade2, correct_saccade3]).view(np.recarray)
# after saccades, we might end up with invalid x and y values, have to
# correct these
x_vals = copy.x
y_vals = copy.y
copy.x = np.piecewise(x_vals,\
[x_vals >= 65000, (x_vals < 65000) & (x_vals >= td.width), x_vals < td.width],\
[0, td.width - 1, lambda x: x])
copy.y = np.piecewise(y_vals,\
[y_vals >= 65000, (y_vals < 65000) & (y_vals >= td.height), y_vals < td.height],\
[0, td.height - 1, lambda y: y])
return copy
def apply_tracking1(td, alpha=0.98, threshold=-1):
"""Alternative to stabilization. Compensate for motion of a single "object" by tracking its movement
The concept is fairly simple:
0: The tracker starts at the center of the event recording
1: For each incoming event, calculate its distance to the tracker.
2: If the distance is less than a threshold then update the tracker location using
3: tracker_location = tracker_location*alpha + event_location*(1-alpha)
You may find the tracker is quite erratic because it moves with every incoming event. It may be a good idea to smooth the motion somewhat which would be another step.%
td: eventvision.Events
alpha: alpha is a number between 0 and 1. Typically quite high. Default 0.9
threshold: distance in pixels for the tracker to be updated. Default = 0.5 * height of td
"""
assert(alpha >= 0)
assert(alpha <= 1)
mix = 1 - alpha
#with timer.Timer() as my_timer:
track_x = center_x = td.width / 2
track_y = center_y = td.height / 2
threshold_sq = math.floor(center_y**2)
if (threshold > 0):
threshold_sq = math.floor(threshold**2)
copy = np.copy(td.data).view(np.recarray)
for i in range(copy.size):
datum = copy[i]
y_val = datum.y
x_val = datum.x
distance = (track_x - x_val)**2 + (track_y - y_val)**2
if (distance <= threshold_sq):
track_x = track_x * alpha + x_val * mix
track_y = track_y * alpha + y_val * mix
datum.y = round(y_val - track_y + center_y)
datum.x = round(x_val - track_x + center_x)
#print 'Applying tracker took %s seconds' % my_timer.secs
# remove the events that are out of bounds
return copy[(copy.x >= 0) & (copy.y >= 0) & (copy.x < td.width) & (copy.y < td.height)]
def apply_tracking2(td, num_spikes = 20, alpha=0.5, threshold=-1):
"""Work as well as tracking 1, but faster
Alternative to stabilization. Compensate for motion of a single "object" by tracking its movement every "num_spike" spikes
1: Filter spikes far from the tracker
2: tracker location = tracker_location*alpha + filtered_average*(1-alpha)
td: eventvision.Events
num_spikes: number of spike to process in a batch
alpha: between 0 and 1. How much weight to give to previous tracker value
threshold: distance in number of pixels. Spikes within this distance shall be included in the tracker location computation. It is half of the event height by default.
"""
assert(alpha >= 0)
assert(alpha <= 1)
mix = 1 - alpha
track_x = center_x = float(td.width / 2)
track_y = center_y = float(td.height / 2)
threshold_sq = math.floor(center_y**2)
if (threshold > 0):
threshold_sq = math.floor(threshold**2)
copy = np.copy(td.data).view(np.recarray)
offset_x_arr = np.zeros(copy.size, np.float32)
offset_y_arr = np.zeros(copy.size, np.float32)
for spike_index in range(0, copy.size, num_spikes):
frame_data = copy[spike_index:spike_index + num_spikes]
distances = ((frame_data.x - track_x) ** 2) + ((frame_data.y - track_y) ** 2)
valid_data = frame_data[distances < threshold_sq]
if valid_data.size > 0:
x_avg = float(np.sum(valid_data.x)) / valid_data.size
y_avg = float(np.sum(valid_data.y)) / valid_data.size
track_x = (track_x * alpha) + (x_avg * mix)
track_y = (track_y * alpha) + (y_avg * mix)
offset_x = int(round(center_x - track_x))
offset_y = int(round(center_y - track_y))
offset_x_arr[spike_index:spike_index + num_spikes] = offset_x
offset_y_arr[spike_index:spike_index + num_spikes] = offset_y
offset_x_arr[spike_index:] = offset_x
offset_y_arr[spike_index:] = offset_y
copy.x = (copy.x + offset_x_arr).astype(np.uint8)
copy.y = (copy.y + offset_y_arr).astype(np.uint8)
# remove the events that are out of bounds
return copy[(copy.x >= 0) & (copy.y >= 0) & (copy.x < td.width) & (copy.y < td.height)]
def apply_tracking3(td, time_us=1000, alpha=0.7, threshold=-1):
"""Work as well as tracking 1, but faster
Alternative to stabilization. Compensate for motion of a single "object" by tracking its movement every time_us microseconds
1: Filter spikes far from the tracker
2: tracker location = tracker_location*alpha + filtered_average*(1-alpha)
td: eventvision.Events
time_us: batch spikes by time (in microseconds). Default = 1 millisecond
alpha: between 0 and 1. How much weight to give to previous tracker value
threshold: distance in number of pixels. Spikes within this distance shall be included in the tracker location computation. It is half of the event height by default.
"""
assert(alpha >= 0)
assert(alpha <= 1)
mix = 1 - alpha
track_x = center_x = float(td.width / 2)
track_y = center_y = float(td.height / 2)
threshold_sq = math.floor(center_y**2)
if (threshold > 0):
threshold_sq = math.floor(threshold**2)
copy = np.copy(td.data).view(np.recarray)
offset_x = offset_y = 0
offset_x_arr = np.zeros(copy.size, np.float32)
offset_y_arr = np.zeros(copy.size, np.float32)
offset_index = 0 # used to keep track of the offsets we are writing to
for start_ts in range(copy[0].ts, copy[-1].ts, time_us):
end_ts = start_ts + time_us
frame_data = copy[(copy.ts >= start_ts) & (copy.ts < end_ts)]
distances = ((frame_data.x - track_x) ** 2) + ((frame_data.y - track_y) ** 2)
valid_data = frame_data[distances < threshold_sq]
if valid_data.size > 0:
x_avg = float(np.sum(valid_data.x)) / valid_data.size
y_avg = float(np.sum(valid_data.y)) / valid_data.size
track_x = (track_x * alpha) + (x_avg * mix)
track_y = (track_y * alpha) + (y_avg * mix)
offset_x = int(round(center_x - track_x))
offset_y = int(round(center_y - track_y))
offset_x_arr[offset_index:offset_index + frame_data.size] = offset_x
offset_y_arr[offset_index:offset_index + frame_data.size] = offset_y
offset_index += frame_data.size
offset_x_arr[offset_index:] = offset_x
offset_y_arr[offset_index:] = offset_y
copy.x = (copy.x + offset_x_arr).astype(np.uint8)
copy.y = (copy.y + offset_y_arr).astype(np.uint8)
# remove the events that are out of bounds
return copy[(copy.x >= 0) & (copy.y >= 0) & (copy.x < td.width) & (copy.y < td.height)]
def make_td_images(td, num_spikes, step_factor=1):
"""Generate set of images from the Temporal Difference (td) events by reading a number of unique spikes
td is read from a binary file (refer to eventvision.Readxxx functions)
td: eventvision.Events
num_spikes: number of unique spikes to accumulate before generating an image
step_factor: proportional amount to shift before generating the next image.
1 would result in no overlapping events between images
0.6 would result in the next image overlapping with 40% of the previous image
returns array of images
"""
assert isinstance(td, ev.Events)
assert isinstance(num_spikes, (int, long))
assert num_spikes > 0
assert step_factor > 0
#with timer.Timer() as my_timer:
event_offset = 0
images = []
while event_offset + num_spikes < td.data.size:
image = np.zeros((td.height, td.width), dtype=np.uint8)
unique_spike_count = 0
index_ptr = event_offset
while (unique_spike_count < num_spikes) & (index_ptr < td.data.size):
event = td.data[index_ptr]
y = event.y
x = event.x
if image[y, x] == 0:
image[y, x] = 255
unique_spike_count += 1
index_ptr += 1
#cv2.imshow('img', img)
#cv2.waitKey(1)
if unique_spike_count < num_spikes:
break
images.append(image)
#offset next image
total_spikes_traversed = index_ptr - event_offset
event_offset += math.floor(total_spikes_traversed * step_factor) + 1
#print 'Making images out of bin file took %s seconds' % my_timer.secs
return images
def make_td_probability_image(td, skip_steps=0, is_normalize = False):
"""Generate image from the Temporal Difference (td) events with each pixel value indicating probability of a spike within a 1 millisecond time step. 0 = 0%. 255 = 100%
td is read from a binary file (refer to eventvision.Readxxx functions)
td: eventvision.Events
skip_steps: number of time steps to skip (to allow tracker to init to a more correct position)
is_normalize: True to make the images more obvious (by scaling max probability to pixel value 255)
"""
assert isinstance(td, ev.Events)
#with timer.Timer() as my_timer:
event_offset = 0
combined_image = np.zeros((td.height, td.width), np.float32)
offset_ts = td.data[0].ts + (skip_steps * 1000)
num_time_steps = math.floor((td.data[-1].ts - offset_ts) / 1000)
current_frame = np.zeros((td.height, td.width), np.uint8)
for start_ts in range(int(offset_ts), td.data[-1].ts, 1000):
end_ts = start_ts + 1000
frame_data = td.data[(td.data.ts >= start_ts) & (td.data.ts < end_ts)]
current_frame.fill(0)
current_frame[frame_data.y, frame_data.x] = 1
combined_image = combined_image + current_frame
#print 'Making image out of bin file took %s seconds' % my_timer.secs
if (is_normalize):
combined_image = (combined_image / np.max(combined_image))
else:
combined_image = (combined_image / num_time_steps)
return combined_image
def prepare_n_mnist(filename, is_filter, num_spikes, step_factor=1):
"""Creates images from the specified n mnist recording
filename: path to the recording
is_filter: True if median filtering should be applied to the constructed image
num_spikes: number of unique spikes per image
step_factor: proportional amount to shift before generating the next image
1 would result in no overlapping events between images
0.6 would result in the next image overlapping with 40% of the previous image
returns: list of images, where each image is a 2d numpy array (height, width)
"""
td = ev.read_dataset(filename)
#td.show_td(100)
td.data = stabilize(td)
td.data = td.extract_roi([3, 3], [28, 28], True)
images = make_td_images(td, num_spikes, step_factor)
if is_filter:
images = ndimage.median_filter(images, 3)
#for image in images:
# cv2.imshow('img', image)
# cv2.waitKey(70)
return images
def prepare_n_mnist_continuous(filename, is_filter, is_normalize=False):
"""Creates image with pixel values indicating probability of a spike
filename: path to the recording
is_filter: True if median filtering should be applied to the constructed image
is_normalize: If True, the probabilities will be normalized to make the image more obvious
returns: image (2d numpy array (height, width))
"""
td = ev.read_dataset(filename)
#td.show_td(100)
td.data = stabilize(td)
td.data = td.extract_roi([0, 0], [28, 28], True)
#td.data = apply_tracking1(td)
#td.data = apply_tracking2(td)
#td.data = apply_tracking3(td)
#td.data = td.extract_roi([3, 3], [28, 28], True)
image = make_td_probability_image(td, 9, is_normalize)
if is_filter:
image = ndimage.median_filter(image, 3)
#cv2.imshow('img', image)
#cv2.waitKey(1)
return image
def add_images_to_dataset(image_dataset, images, add_index, label, width, height):
"""Add/replace images to a image dataset at a specified index"""
if isinstance(images, list):
idx = add_index
for image in images:
image_dataset[idx].height = height
image_dataset[idx].width = width
image_dataset[idx].image_data = image
image_dataset[idx].label = label
idx += 1
else:
image_dataset[add_index].height = height
image_dataset[add_index].width = width
image_dataset[add_index].image_data = images
image_dataset[add_index].label = label
def save_to_lmdb(image_dataset, output_lmdb, is_float_data):
"""Save contents of image dataset to an lmdb
image_dataset: images in a numpy record array
output_lmdb: path to output lmdb
returns caffe_lmdb instance
"""
# shuffle the images before storing in the lmdb
# np.random.shuffle(image_dataset) # does not work
lmdb_size = 5L * image_dataset.height[0] * image_dataset.width[0] * image_dataset.size
if is_float_data:
lmdb_size = lmdb_size * 4L;
shuffled_indices = range(image_dataset.size)
np.random.shuffle(shuffled_indices)
image_database = caffe_lmdb.CaffeLmdb(output_lmdb, lmdb_size)
image_database.start_write_transaction()
count = 0
key = 0
for i in shuffled_indices:
count += 1
key += 1
image = image_dataset[i]
datum = datum_pb2.Datum()
datum.channels = 1 #always one for neuromorphic images
datum.height = image['height'].item(0)
datum.width = image['width'].item(0)
if is_float_data:
float_img = image['image_data'].flatten().tolist()
datum.float_data.extend(float_img)
else:
datum.data = image['image_data'].tobytes() # or .tostring() if numpy < 1.9
datum.label = image['label'].item(0)
str_id = '{:08}'.format(key)
image_database.write_datum(str_id, datum)
#Interim commit every 1000 images
if count % 1000 == 0:
image_database.commit_write_transaction()
image_database.start_write_transaction()
image_database.commit_write_transaction()
return image_database
def save_to_mat(image_dataset, output_mat):
"""Save contents of image dataset to an matlab format
image_dataset: images in a numpy record array
output_mat: path to output mat
returns void
"""
# shuffle the images before storing in the dataset
shuffled_indices = range(image_dataset.size)
np.random.shuffle(shuffled_indices)
num_images = image_dataset.size
num_features = image_dataset.height[0]*image_dataset.width[0]
num_labels = 10
# Numpy Array which will be written into output matrix (Pre-allocate memory)
# Assumes image_dataset[i]['image_data'] is of the format = [height, width]
images = np.zeros((num_images,num_features), dtype=np.float) # np.uint8 is sufficient if space is an issue
labels = np.zeros((num_images,num_labels), dtype=np.float)
key = 0
for i in shuffled_indices:
image = image_dataset[i]
flat_image = image['image_data'].T
images[key,:] = flat_image.flatten()
labels[key,:] = np.zeros((1,num_labels))
labels[key,image['label'].item(0)] = 1
key += 1
savemat(output_mat, {'labels' : labels, 'data' : images}, appendmat=True,do_compression=True)
def generate_nmnist_dataset(initial_size, input_dir, num_spikes, step_factor):
"""Parse the specified directory containing nmnist files to generate an image dataset
initial_size: initial size of the image dataset.
Set this to an appropriately high value to avoid expensive reallocation
input_dir: input directory.
Should contain folders 0 to 9, each containing a set of bin files (n mnist recordings)
num_spikes: number of unique spikes per image
step_factor: proportional amount to shift before generating the next image
1 would result in no overlapping events between images
0.6 would result in the next image overlapping with 40% of the previous image
"""
image_dataset = np.rec.array(None, dtype=[('height', np.uint16), ('width', np.uint16), ('image_data', 'object'), ('label', np.uint32)], shape=(initial_size))
num_images = 0
# loop through each folder within the test directories
for i in range(0, 10):
current_dir = input_dir + os.path.sep + str(i) + os.path.sep + '*.bin'
print 'Processing %s...' %current_dir
for filename in glob.iglob(current_dir):
images = prepare_n_mnist(filename, True, num_spikes, step_factor)
if num_images + len(images) >= image_dataset.size:
image_dataset = np.resize(image_dataset, (num_images + len(images)) * 2)
add_images_to_dataset(image_dataset, images, num_images, i, 28, 28)
num_images += len(images)
return image_dataset[0:num_images]
def generate_nmnist_continuous_dataset(initial_size, input_dir):
"""Parse the specified directory containing nmnist files to generate an image dataset meant for training
initial_size: initial size of the image dataset.
Set this to an appropriately high value to avoid expensive reallocation
input_dir: input directory.
Should contain folders 0 to 9, each containing a set of bin files (n mnist recordings)
"""
image_dataset = np.rec.array(None, dtype=[('height', np.uint16), ('width', np.uint16), ('image_data', 'object'), ('label', np.uint32)], shape=(initial_size))
num_images = 0
# loop through each folder within the test directories
for i in range(0, 10):
current_dir = input_dir + os.path.sep + str(i) + os.path.sep + '*.bin'
print 'Processing %s...' %current_dir
for filename in glob.iglob(current_dir):
image = prepare_n_mnist_continuous(filename, False, False)
if num_images + 1 >= image_dataset.size:
image_dataset = np.resize(image_dataset, (num_images * 2))
add_images_to_dataset(image_dataset, image, num_images, i, 28, 28)
num_images += 1
return image_dataset[0:num_images]
def show_lmdb_datum(key, datum):
flat_image = np.fromstring(datum.data, dtype=np.uint8)
if (datum.channels == 1):
image = flat_image.reshape(datum.height, datum.width)
else:
image = flat_image.reshape(datum.channels, datum.height, datum.width)
label = datum.label
print label
cv2.imshow('img', image)
cv2.waitKey(1)
def main():
#"""Prepare neuromorphic MNIST image datasets for use in caffe
#Each dataset will be generated with different number of unique spikes
#"""
#initial_size = 1e6 #best to make this big enough avoid expensive re-allocation
#test_dir = os.path.abspath('testFull')
#train_dir = os.path.abspath('trainFull')
#for num_spikes in range(150, 260, 10):
# #test directory
# image_dataset = generate_nmnist_dataset(initial_size, test_dir, num_spikes, 0.75)
# output_lmdb = 'testlmdb' + str(num_spikes)
# database = save_to_lmdb(image_dataset, output_lmdb)
# #database.process_all_data(show_lmdb_datum)
# #train directory
# image_dataset = generate_nmnist_dataset(initial_size, train_dir, num_spikes, 0.75)
# output_lmdb = 'trainlmdb' + str(num_spikes)
# save_to_lmdb(image_dataset, output_lmdb)
##TD = ev.read_dataset(os.path.abspath('trainReduced/0/00002.bin'))
"""Prepare neuromorphic MNIST image datasets for use in caffe
Datasets generated are for continuous spike processing by TrueNorth layers
"""
initial_size = 6e5 #best to make this big enough avoid expensive re-allocation
test_dir = os.path.abspath('testFull')
train_dir = os.path.abspath('trainFull')
#test directory
image_dataset = generate_nmnist_continuous_dataset(initial_size, test_dir)
database = save_to_lmdb(image_dataset, 'testlmdb_continuous', True)
save_to_mat(image_dataset, 'MNIST_continuous_test.mat');
#database.process_all_data(show_lmdb_datum)
#train directory
image_dataset = generate_nmnist_continuous_dataset(initial_size, train_dir)
save_to_lmdb(image_dataset, 'trainlmdb_continuous', True)
save_to_mat(image_dataset, 'MNIST_continuous_train.mat');
#TD = ev.read_dataset(os.path.abspath('trainReduced/0/00002.bin'))
if __name__ == "__main__":
main()