diff --git a/packages/google-cloud-automl/google/cloud/automl_v1/services/auto_ml/async_client.py b/packages/google-cloud-automl/google/cloud/automl_v1/services/auto_ml/async_client.py
index 44da5bcd2e49..adc27c9982ac 100644
--- a/packages/google-cloud-automl/google/cloud/automl_v1/services/auto_ml/async_client.py
+++ b/packages/google-cloud-automl/google/cloud/automl_v1/services/auto_ml/async_client.py
@@ -73,7 +73,7 @@ class AutoMlAsyncClient:
Currently the only supported ``location_id`` is "us-central1".
On any input that is documented to expect a string parameter in
- snake_case or kebab-case, either of those cases is accepted.
+ snake_case or dash-case, either of those cases is accepted.
"""
_client: AutoMlClient
@@ -1411,7 +1411,6 @@ async def deploy_model(
r"""Deploys a model. If a model is already deployed, deploying it
with the same parameters has no effect. Deploying with different
parametrs (as e.g. changing
-
[node_number][google.cloud.automl.v1p1beta.ImageObjectDetectionModelDeploymentMetadata.node_number])
will reset the deployment state without pausing the model's
availability.
diff --git a/packages/google-cloud-automl/google/cloud/automl_v1/services/auto_ml/client.py b/packages/google-cloud-automl/google/cloud/automl_v1/services/auto_ml/client.py
index 127154a15f88..8fdeecddd4b5 100644
--- a/packages/google-cloud-automl/google/cloud/automl_v1/services/auto_ml/client.py
+++ b/packages/google-cloud-automl/google/cloud/automl_v1/services/auto_ml/client.py
@@ -107,7 +107,7 @@ class AutoMlClient(metaclass=AutoMlClientMeta):
Currently the only supported ``location_id`` is "us-central1".
On any input that is documented to expect a string parameter in
- snake_case or kebab-case, either of those cases is accepted.
+ snake_case or dash-case, either of those cases is accepted.
"""
@staticmethod
@@ -1593,7 +1593,6 @@ def deploy_model(
r"""Deploys a model. If a model is already deployed, deploying it
with the same parameters has no effect. Deploying with different
parametrs (as e.g. changing
-
[node_number][google.cloud.automl.v1p1beta.ImageObjectDetectionModelDeploymentMetadata.node_number])
will reset the deployment state without pausing the model's
availability.
diff --git a/packages/google-cloud-automl/google/cloud/automl_v1/services/auto_ml/transports/grpc.py b/packages/google-cloud-automl/google/cloud/automl_v1/services/auto_ml/transports/grpc.py
index 7ea7c5fc9921..6765f1db45fa 100644
--- a/packages/google-cloud-automl/google/cloud/automl_v1/services/auto_ml/transports/grpc.py
+++ b/packages/google-cloud-automl/google/cloud/automl_v1/services/auto_ml/transports/grpc.py
@@ -53,7 +53,7 @@ class AutoMlGrpcTransport(AutoMlTransport):
Currently the only supported ``location_id`` is "us-central1".
On any input that is documented to expect a string parameter in
- snake_case or kebab-case, either of those cases is accepted.
+ snake_case or dash-case, either of those cases is accepted.
This class defines the same methods as the primary client, so the
primary client can load the underlying transport implementation
@@ -626,7 +626,6 @@ def deploy_model(
Deploys a model. If a model is already deployed, deploying it
with the same parameters has no effect. Deploying with different
parametrs (as e.g. changing
-
[node_number][google.cloud.automl.v1p1beta.ImageObjectDetectionModelDeploymentMetadata.node_number])
will reset the deployment state without pausing the model's
availability.
diff --git a/packages/google-cloud-automl/google/cloud/automl_v1/services/auto_ml/transports/grpc_asyncio.py b/packages/google-cloud-automl/google/cloud/automl_v1/services/auto_ml/transports/grpc_asyncio.py
index 26c4d73c47f1..f5644c10dd6c 100644
--- a/packages/google-cloud-automl/google/cloud/automl_v1/services/auto_ml/transports/grpc_asyncio.py
+++ b/packages/google-cloud-automl/google/cloud/automl_v1/services/auto_ml/transports/grpc_asyncio.py
@@ -54,7 +54,7 @@ class AutoMlGrpcAsyncIOTransport(AutoMlTransport):
Currently the only supported ``location_id`` is "us-central1".
On any input that is documented to expect a string parameter in
- snake_case or kebab-case, either of those cases is accepted.
+ snake_case or dash-case, either of those cases is accepted.
This class defines the same methods as the primary client, so the
primary client can load the underlying transport implementation
@@ -638,7 +638,6 @@ def deploy_model(
Deploys a model. If a model is already deployed, deploying it
with the same parameters has no effect. Deploying with different
parametrs (as e.g. changing
-
[node_number][google.cloud.automl.v1p1beta.ImageObjectDetectionModelDeploymentMetadata.node_number])
will reset the deployment state without pausing the model's
availability.
diff --git a/packages/google-cloud-automl/google/cloud/automl_v1/services/prediction_service/async_client.py b/packages/google-cloud-automl/google/cloud/automl_v1/services/prediction_service/async_client.py
index 0ceb1544ef5f..e2eeb0f0c36d 100644
--- a/packages/google-cloud-automl/google/cloud/automl_v1/services/prediction_service/async_client.py
+++ b/packages/google-cloud-automl/google/cloud/automl_v1/services/prediction_service/async_client.py
@@ -47,7 +47,7 @@ class PredictionServiceAsyncClient:
"""AutoML Prediction API.
On any input that is documented to expect a string parameter in
- snake_case or kebab-case, either of those cases is accepted.
+ snake_case or dash-case, either of those cases is accepted.
"""
_client: PredictionServiceClient
@@ -270,7 +270,6 @@ async def predict(
AutoML Tables
``feature_importance`` : (boolean) Whether
-
[feature_importance][google.cloud.automl.v1.TablesModelColumnInfo.feature_importance]
is populated in the returned list of
[TablesAnnotation][google.cloud.automl.v1.TablesAnnotation]
diff --git a/packages/google-cloud-automl/google/cloud/automl_v1/services/prediction_service/client.py b/packages/google-cloud-automl/google/cloud/automl_v1/services/prediction_service/client.py
index 59cc17d58600..22de25cdff0b 100644
--- a/packages/google-cloud-automl/google/cloud/automl_v1/services/prediction_service/client.py
+++ b/packages/google-cloud-automl/google/cloud/automl_v1/services/prediction_service/client.py
@@ -85,7 +85,7 @@ class PredictionServiceClient(metaclass=PredictionServiceClientMeta):
"""AutoML Prediction API.
On any input that is documented to expect a string parameter in
- snake_case or kebab-case, either of those cases is accepted.
+ snake_case or dash-case, either of those cases is accepted.
"""
@staticmethod
@@ -464,7 +464,6 @@ def predict(
AutoML Tables
``feature_importance`` : (boolean) Whether
-
[feature_importance][google.cloud.automl.v1.TablesModelColumnInfo.feature_importance]
is populated in the returned list of
[TablesAnnotation][google.cloud.automl.v1.TablesAnnotation]
diff --git a/packages/google-cloud-automl/google/cloud/automl_v1/services/prediction_service/transports/grpc.py b/packages/google-cloud-automl/google/cloud/automl_v1/services/prediction_service/transports/grpc.py
index b3f09e018f03..ec174da7e84d 100644
--- a/packages/google-cloud-automl/google/cloud/automl_v1/services/prediction_service/transports/grpc.py
+++ b/packages/google-cloud-automl/google/cloud/automl_v1/services/prediction_service/transports/grpc.py
@@ -36,7 +36,7 @@ class PredictionServiceGrpcTransport(PredictionServiceTransport):
AutoML Prediction API.
On any input that is documented to expect a string parameter in
- snake_case or kebab-case, either of those cases is accepted.
+ snake_case or dash-case, either of those cases is accepted.
This class defines the same methods as the primary client, so the
primary client can load the underlying transport implementation
diff --git a/packages/google-cloud-automl/google/cloud/automl_v1/services/prediction_service/transports/grpc_asyncio.py b/packages/google-cloud-automl/google/cloud/automl_v1/services/prediction_service/transports/grpc_asyncio.py
index 2ec6ab926dfc..cca25f11f0f0 100644
--- a/packages/google-cloud-automl/google/cloud/automl_v1/services/prediction_service/transports/grpc_asyncio.py
+++ b/packages/google-cloud-automl/google/cloud/automl_v1/services/prediction_service/transports/grpc_asyncio.py
@@ -37,7 +37,7 @@ class PredictionServiceGrpcAsyncIOTransport(PredictionServiceTransport):
AutoML Prediction API.
On any input that is documented to expect a string parameter in
- snake_case or kebab-case, either of those cases is accepted.
+ snake_case or dash-case, either of those cases is accepted.
This class defines the same methods as the primary client, so the
primary client can load the underlying transport implementation
diff --git a/packages/google-cloud-automl/google/cloud/automl_v1/types/annotation_spec.py b/packages/google-cloud-automl/google/cloud/automl_v1/types/annotation_spec.py
index 5bcbcff3fa1f..05953b962fa5 100644
--- a/packages/google-cloud-automl/google/cloud/automl_v1/types/annotation_spec.py
+++ b/packages/google-cloud-automl/google/cloud/automl_v1/types/annotation_spec.py
@@ -27,7 +27,6 @@ class AnnotationSpec(proto.Message):
Attributes:
name (str):
Output only. Resource name of the annotation spec. Form:
-
'projects/{project_id}/locations/{location_id}/datasets/{dataset_id}/annotationSpecs/{annotation_spec_id}'
display_name (str):
Required. The name of the annotation spec to show in the
diff --git a/packages/google-cloud-automl/google/cloud/automl_v1/types/classification.py b/packages/google-cloud-automl/google/cloud/automl_v1/types/classification.py
index 40202f16314f..2103966dda7a 100644
--- a/packages/google-cloud-automl/google/cloud/automl_v1/types/classification.py
+++ b/packages/google-cloud-automl/google/cloud/automl_v1/types/classification.py
@@ -169,7 +169,6 @@ class ConfusionMatrix(proto.Message):
annotation_spec_id (Sequence[str]):
Output only. IDs of the annotation specs used in the
confusion matrix. For Tables CLASSIFICATION
-
[prediction_type][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type]
only list of [annotation_spec_display_name-s][] is
populated.
@@ -177,7 +176,6 @@ class ConfusionMatrix(proto.Message):
Output only. Display name of the annotation specs used in
the confusion matrix, as they were at the moment of the
evaluation. For Tables CLASSIFICATION
-
[prediction_type-s][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type],
distinct values of the target column at the moment of the
model evaluation are populated here.
diff --git a/packages/google-cloud-automl/google/cloud/automl_v1/types/data_items.py b/packages/google-cloud-automl/google/cloud/automl_v1/types/data_items.py
index f2895f5ce9ff..041552e47181 100644
--- a/packages/google-cloud-automl/google/cloud/automl_v1/types/data_items.py
+++ b/packages/google-cloud-automl/google/cloud/automl_v1/types/data_items.py
@@ -139,7 +139,6 @@ class Layout(proto.Message):
The position of the
[text_segment][google.cloud.automl.v1.Document.Layout.text_segment]
in the page. Contains exactly 4
-
[normalized_vertices][google.cloud.automl.v1p1beta.BoundingPoly.normalized_vertices]
and they are connected by edges in the order provided, which
will represent a rectangle parallel to the frame. The
diff --git a/packages/google-cloud-automl/google/cloud/automl_v1/types/image.py b/packages/google-cloud-automl/google/cloud/automl_v1/types/image.py
index 129cb5d7dd78..e5d1e151d2b1 100644
--- a/packages/google-cloud-automl/google/cloud/automl_v1/types/image.py
+++ b/packages/google-cloud-automl/google/cloud/automl_v1/types/image.py
@@ -61,13 +61,13 @@ class ImageClassificationModelMetadata(proto.Message):
``location`` as the new model to create, and have the same
``model_type``.
train_budget_milli_node_hours (int):
- The train budget of creating this model, expressed in milli
- node hours i.e. 1,000 value in this field means 1 node hour.
- The actual ``train_cost`` will be equal or less than this
- value. If further model training ceases to provide any
- improvements, it will stop without using full budget and the
- stop_reason will be ``MODEL_CONVERGED``. Note, node_hour =
- actual_hour \* number_of_nodes_invovled. For model type
+ Optional. The train budget of creating this model, expressed
+ in milli node hours i.e. 1,000 value in this field means 1
+ node hour. The actual ``train_cost`` will be equal or less
+ than this value. If further model training ceases to provide
+ any improvements, it will stop without using full budget and
+ the stop_reason will be ``MODEL_CONVERGED``. Note, node_hour
+ = actual_hour \* number_of_nodes_invovled. For model type
``cloud``\ (default), the train budget must be between 8,000
and 800,000 milli node hours, inclusive. The default value
is 192, 000 which represents one day in wall time. For model
@@ -199,13 +199,13 @@ class ImageObjectDetectionModelMetadata(proto.Message):
Output only. The reason that this create model operation
stopped, e.g. ``BUDGET_REACHED``, ``MODEL_CONVERGED``.
train_budget_milli_node_hours (int):
- The train budget of creating this model, expressed in milli
- node hours i.e. 1,000 value in this field means 1 node hour.
- The actual ``train_cost`` will be equal or less than this
- value. If further model training ceases to provide any
- improvements, it will stop without using full budget and the
- stop_reason will be ``MODEL_CONVERGED``. Note, node_hour =
- actual_hour \* number_of_nodes_invovled. For model type
+ Optional. The train budget of creating this model, expressed
+ in milli node hours i.e. 1,000 value in this field means 1
+ node hour. The actual ``train_cost`` will be equal or less
+ than this value. If further model training ceases to provide
+ any improvements, it will stop without using full budget and
+ the stop_reason will be ``MODEL_CONVERGED``. Note, node_hour
+ = actual_hour \* number_of_nodes_invovled. For model type
``cloud-high-accuracy-1``\ (default) and
``cloud-low-latency-1``, the train budget must be between
20,000 and 900,000 milli node hours, inclusive. The default
@@ -242,7 +242,6 @@ class ImageClassificationModelDeploymentMetadata(proto.Message):
Input only. The number of nodes to deploy the model on. A
node is an abstraction of a machine resource, which can
handle online prediction QPS as given in the model's
-
[node_qps][google.cloud.automl.v1.ImageClassificationModelMetadata.node_qps].
Must be between 1 and 100, inclusive on both ends.
"""
@@ -258,7 +257,6 @@ class ImageObjectDetectionModelDeploymentMetadata(proto.Message):
Input only. The number of nodes to deploy the model on. A
node is an abstraction of a machine resource, which can
handle online prediction QPS as given in the model's
-
[qps_per_node][google.cloud.automl.v1.ImageObjectDetectionModelMetadata.qps_per_node].
Must be between 1 and 100, inclusive on both ends.
"""
diff --git a/packages/google-cloud-automl/google/cloud/automl_v1/types/io.py b/packages/google-cloud-automl/google/cloud/automl_v1/types/io.py
index e071fa3e0c58..171d5484a60c 100644
--- a/packages/google-cloud-automl/google/cloud/automl_v1/types/io.py
+++ b/packages/google-cloud-automl/google/cloud/automl_v1/types/io.py
@@ -613,7 +613,6 @@ class InputConfig(proto.Message):
[gcs_source][google.cloud.automl.v1.InputConfig.gcs_source] or
[bigquery_source][google.cloud.automl.v1.InputConfig.bigquery_source].
All input is concatenated into a single
-
[primary_table_spec_id][google.cloud.automl.v1.TablesDatasetMetadata.primary_table_spec_id]
**For gcs_source:**
@@ -632,9 +631,7 @@ class InputConfig(proto.Message):
"Id","First Name","Last Name","Dob","Addresses"
-
"1","John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"
-
"2","Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]}
@@ -1012,7 +1009,6 @@ class BatchPredictInputConfig(proto.Message):
contain values for the corresponding columns.
The column names must contain the model's
-
[input_feature_column_specs'][google.cloud.automl.v1.TablesModelMetadata.input_feature_column_specs]
[display_name-s][google.cloud.automl.v1.ColumnSpec.display_name]
(order doesn't matter). The columns corresponding to the model's
@@ -1026,9 +1022,7 @@ class BatchPredictInputConfig(proto.Message):
"First Name","Last Name","Dob","Addresses"
-
"John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"
-
"Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]}
@@ -1038,7 +1032,6 @@ class BatchPredictInputConfig(proto.Message):
table must be 100GB or smaller.
The column names must contain the model's
-
[input_feature_column_specs'][google.cloud.automl.v1.TablesModelMetadata.input_feature_column_specs]
[display_name-s][google.cloud.automl.v1.ColumnSpec.display_name]
(order doesn't matter). The columns corresponding to the model's
@@ -1119,23 +1112,21 @@ class OutputConfig(proto.Message):
- For Tables: Output depends on whether the dataset was imported
from Google Cloud Storage or BigQuery. Google Cloud Storage
case:
-
- [gcs_destination][google.cloud.automl.v1p1beta.OutputConfig.gcs_destination]
- must be set. Exported are CSV file(s) ``tables_1.csv``,
- ``tables_2.csv``,...,\ ``tables_N.csv`` with each having as header
- line the table's column names, and all other lines contain values
- for the header columns. BigQuery case:
-
- [bigquery_destination][google.cloud.automl.v1p1beta.OutputConfig.bigquery_destination]
- pointing to a BigQuery project must be set. In the given project a
- new dataset will be created with name
-
- ``export_data__``
- where will be made BigQuery-dataset-name compatible (e.g. most
- special characters will become underscores), and timestamp will be
- in YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In that
- dataset a new table called ``primary_table`` will be created, and
- filled with precisely the same data as this obtained on import.
+ [gcs_destination][google.cloud.automl.v1p1beta.OutputConfig.gcs_destination]
+ must be set. Exported are CSV file(s) ``tables_1.csv``,
+ ``tables_2.csv``,...,\ ``tables_N.csv`` with each having as
+ header line the table's column names, and all other lines
+ contain values for the header columns. BigQuery case:
+ [bigquery_destination][google.cloud.automl.v1p1beta.OutputConfig.bigquery_destination]
+ pointing to a BigQuery project must be set. In the given
+ project a new dataset will be created with name
+ ``export_data__``
+ where will be made BigQuery-dataset-name compatible (e.g. most
+ special characters will become underscores), and timestamp
+ will be in YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601"
+ format. In that dataset a new table called ``primary_table``
+ will be created, and filled with precisely the same data as
+ this obtained on import.
.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields
@@ -1162,7 +1153,6 @@ class BatchPredictOutputConfig(proto.Message):
r"""Output configuration for BatchPredict Action.
As destination the
-
[gcs_destination][google.cloud.automl.v1.BatchPredictOutputConfig.gcs_destination]
must be set unless specified otherwise for a domain. If
gcs_destination is set then in the given directory a new directory
@@ -1187,10 +1177,8 @@ class BatchPredictOutputConfig(proto.Message):
predictions). These files will have a JSON representation of a
proto that wraps the same "ID" : "" but here followed
by exactly one
-
- [``google.rpc.Status``](https:
- //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
- containing only ``code`` and ``message``\ fields.
+ ```google.rpc.Status`` `__
+ containing only ``code`` and ``message``\ fields.
- For Image Object Detection: In the created directory files
``image_object_detection_1.jsonl``,
@@ -1209,10 +1197,8 @@ class BatchPredictOutputConfig(proto.Message):
predictions). These files will have a JSON representation of a
proto that wraps the same "ID" : "" but here followed
by exactly one
-
- [``google.rpc.Status``](https:
- //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
- containing only ``code`` and ``message``\ fields.
+ ```google.rpc.Status`` `__
+ containing only ``code`` and ``message``\ fields.
- For Video Classification: In the created directory a
video_classification.csv file, and a .JSON file per each video
@@ -1222,27 +1208,25 @@ class BatchPredictOutputConfig(proto.Message):
::
The format of video_classification.csv is:
-
- GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
- where: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1
- to 1 the prediction input lines (i.e. video_classification.csv has
- precisely the same number of lines as the prediction input had.)
- JSON_FILE_NAME = Name of .JSON file in the output directory, which
- contains prediction responses for the video time segment. STATUS =
- "OK" if prediction completed successfully, or an error code with
- message otherwise. If STATUS is not "OK" then the .JSON file for
- that line may not exist or be empty.
-
- ::
-
- Each .JSON file, assuming STATUS is "OK", will contain a list of
- AnnotationPayload protos in JSON format, which are the predictions
- for the video time segment the file is assigned to in the
- video_classification.csv. All AnnotationPayload protos will have
- video_classification field set, and will be sorted by
- video_classification.type field (note that the returned types are
- governed by `classifaction_types` parameter in
- [PredictService.BatchPredictRequest.params][]).
+ GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
+ where:
+ GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1
+ the prediction input lines (i.e. video_classification.csv has
+ precisely the same number of lines as the prediction input had.)
+ JSON_FILE_NAME = Name of .JSON file in the output directory, which
+ contains prediction responses for the video time segment.
+ STATUS = "OK" if prediction completed successfully, or an error code
+ with message otherwise. If STATUS is not "OK" then the .JSON file
+ for that line may not exist or be empty.
+
+ Each .JSON file, assuming STATUS is "OK", will contain a list of
+ AnnotationPayload protos in JSON format, which are the predictions
+ for the video time segment the file is assigned to in the
+ video_classification.csv. All AnnotationPayload protos will have
+ video_classification field set, and will be sorted by
+ video_classification.type field (note that the returned types are
+ governed by `classifaction_types` parameter in
+ [PredictService.BatchPredictRequest.params][]).
- For Video Object Tracking: In the created directory a
video_object_tracking.csv file will be created, and multiple
@@ -1254,24 +1238,22 @@ class BatchPredictOutputConfig(proto.Message):
::
The format of video_object_tracking.csv is:
-
- GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
- where: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1
- to 1 the prediction input lines (i.e. video_object_tracking.csv has
- precisely the same number of lines as the prediction input had.)
- JSON_FILE_NAME = Name of .JSON file in the output directory, which
- contains prediction responses for the video time segment. STATUS =
- "OK" if prediction completed successfully, or an error code with
- message otherwise. If STATUS is not "OK" then the .JSON file for
- that line may not exist or be empty.
-
- ::
-
- Each .JSON file, assuming STATUS is "OK", will contain a list of
- AnnotationPayload protos in JSON format, which are the predictions
- for each frame of the video time segment the file is assigned to in
- video_object_tracking.csv. All AnnotationPayload protos will have
- video_object_tracking field set.
+ GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
+ where:
+ GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1
+ the prediction input lines (i.e. video_object_tracking.csv has
+ precisely the same number of lines as the prediction input had.)
+ JSON_FILE_NAME = Name of .JSON file in the output directory, which
+ contains prediction responses for the video time segment.
+ STATUS = "OK" if prediction completed successfully, or an error
+ code with message otherwise. If STATUS is not "OK" then the .JSON
+ file for that line may not exist or be empty.
+
+ Each .JSON file, assuming STATUS is "OK", will contain a list of
+ AnnotationPayload protos in JSON format, which are the predictions
+ for each frame of the video time segment the file is assigned to in
+ video_object_tracking.csv. All AnnotationPayload protos will have
+ video_object_tracking field set.
- For Text Classification: In the created directory files
``text_classification_1.jsonl``,
@@ -1294,10 +1276,8 @@ class BatchPredictOutputConfig(proto.Message):
`errors_N.jsonl` files will be created (N depends on total number of
failed predictions). These files will have a JSON representation of a
proto that wraps input file followed by exactly one
-
- [``google.rpc.Status``](https:
- //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
- containing only ``code`` and ``message``.
+ [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
+ containing only `code` and `message`.
- For Text Sentiment: In the created directory files
``text_sentiment_1.jsonl``,
@@ -1320,10 +1300,8 @@ class BatchPredictOutputConfig(proto.Message):
`errors_N.jsonl` files will be created (N depends on total number of
failed predictions). These files will have a JSON representation of a
proto that wraps input file followed by exactly one
-
- [``google.rpc.Status``](https:
- //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
- containing only ``code`` and ``message``.
+ [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
+ containing only `code` and `message`.
- For Text Extraction: In the created directory files
``text_extraction_1.jsonl``,
@@ -1354,98 +1332,78 @@ class BatchPredictOutputConfig(proto.Message):
will have a JSON representation of a proto that wraps either the
"id" : "" (in case of inline) or the document proto (in
case of document) but here followed by exactly one
-
- [``google.rpc.Status``](https:
- //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
- containing only ``code`` and ``message``.
+ ```google.rpc.Status`` `__
+ containing only ``code`` and ``message``.
- For Tables: Output depends on whether
-
- [gcs_destination][google.cloud.automl.v1p1beta.BatchPredictOutputConfig.gcs_destination]
- or
-
- [bigquery_destination][google.cloud.automl.v1p1beta.BatchPredictOutputConfig.bigquery_destination]
- is set (either is allowed). Google Cloud Storage case: In the
- created directory files ``tables_1.csv``, ``tables_2.csv``,...,
- ``tables_N.csv`` will be created, where N may be 1, and depends on
- the total number of the successfully predicted rows. For all
- CLASSIFICATION
-
- [prediction_type-s][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type]:
- Each .csv file will contain a header, listing all columns'
-
- [display_name-s][google.cloud.automl.v1p1beta.ColumnSpec.display_name]
- given on input followed by M target column names in the format of
-
- "<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
-
- [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>\_\_score"
- where M is the number of distinct target values, i.e. number of
- distinct values in the target column of the table used to train the
- model. Subsequent lines will contain the respective values of
- successfully predicted rows, with the last, i.e. the target, columns
- having the corresponding prediction
- [scores][google.cloud.automl.v1p1beta.TablesAnnotation.score]. For
- REGRESSION and FORECASTING
-
- [prediction_type-s][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type]:
- Each .csv file will contain a header, listing all columns'
- [display_name-s][google.cloud.automl.v1p1beta.display_name] given on
- input followed by the predicted target column with name in the
- format of
-
- "predicted_<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
-
- [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>"
- Subsequent lines will contain the respective values of successfully
- predicted rows, with the last, i.e. the target, column having the
- predicted target value. If prediction for any rows failed, then an
- additional ``errors_1.csv``, ``errors_2.csv``,..., ``errors_N.csv``
- will be created (N depends on total number of failed rows). These
- files will have analogous format as ``tables_*.csv``, but always
- with a single target column having
-
- [``google.rpc.Status``](https:
- //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
- represented as a JSON string, and containing only ``code`` and
- ``message``. BigQuery case:
-
- [bigquery_destination][google.cloud.automl.v1p1beta.OutputConfig.bigquery_destination]
- pointing to a BigQuery project must be set. In the given project a
- new dataset will be created with name
- ``prediction__``
- where will be made BigQuery-dataset-name compatible (e.g. most
- special characters will become underscores), and timestamp will be
- in YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In the
- dataset two tables will be created, ``predictions``, and ``errors``.
- The ``predictions`` table's column names will be the input columns'
-
- [display_name-s][google.cloud.automl.v1p1beta.ColumnSpec.display_name]
- followed by the target column with name in the format of
-
- "predicted_<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
-
- [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>"
- The input feature columns will contain the respective values of
- successfully predicted rows, with the target column having an ARRAY
- of
-
- [AnnotationPayloads][google.cloud.automl.v1p1beta.AnnotationPayload],
- represented as STRUCT-s, containing
- [TablesAnnotation][google.cloud.automl.v1p1beta.TablesAnnotation].
- The ``errors`` table contains rows for which the prediction has
- failed, it has analogous input columns while the target column name
- is in the format of
-
- "errors_<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
-
- [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>",
- and as a value has
-
- [``google.rpc.Status``](https:
- //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
- represented as a STRUCT, and containing only ``code`` and
- ``message``.
+ [gcs_destination][google.cloud.automl.v1p1beta.BatchPredictOutputConfig.gcs_destination]
+ or
+ [bigquery_destination][google.cloud.automl.v1p1beta.BatchPredictOutputConfig.bigquery_destination]
+ is set (either is allowed). Google Cloud Storage case: In the
+ created directory files ``tables_1.csv``, ``tables_2.csv``,...,
+ ``tables_N.csv`` will be created, where N may be 1, and depends
+ on the total number of the successfully predicted rows. For all
+ CLASSIFICATION
+ [prediction_type-s][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type]:
+ Each .csv file will contain a header, listing all columns'
+ [display_name-s][google.cloud.automl.v1p1beta.ColumnSpec.display_name]
+ given on input followed by M target column names in the format of
+ "<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
+ [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>*\ score"
+ where M is the number of distinct target values, i.e. number of
+ distinct values in the target column of the table used to train
+ the model. Subsequent lines will contain the respective values of
+ successfully predicted rows, with the last, i.e. the target,
+ columns having the corresponding prediction
+ [scores][google.cloud.automl.v1p1beta.TablesAnnotation.score].
+ For REGRESSION and FORECASTING
+ [prediction_type-s][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type]:
+ Each .csv file will contain a header, listing all columns'
+ [display_name-s][google.cloud.automl.v1p1beta.display_name] given
+ on input followed by the predicted target column with name in the
+ format of
+ "predicted\ <[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
+ [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>"
+ Subsequent lines will contain the respective values of
+ successfully predicted rows, with the last, i.e. the target,
+ column having the predicted target value. If prediction for any
+ rows failed, then an additional ``errors_1.csv``,
+ ``errors_2.csv``,..., ``errors_N.csv`` will be created (N depends
+ on total number of failed rows). These files will have analogous
+ format as ``tables_*.csv``, but always with a single target
+ column
+ having*\ ```google.rpc.Status`` `__\ *represented
+ as a JSON string, and containing only ``code`` and ``message``.
+ BigQuery case:
+ [bigquery_destination][google.cloud.automl.v1p1beta.OutputConfig.bigquery_destination]
+ pointing to a BigQuery project must be set. In the given project
+ a new dataset will be created with name
+ ``prediction__``
+ where will be made BigQuery-dataset-name compatible (e.g. most
+ special characters will become underscores), and timestamp will
+ be in YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In the
+ dataset two tables will be created, ``predictions``, and
+ ``errors``. The ``predictions`` table's column names will be the
+ input columns'
+ [display_name-s][google.cloud.automl.v1p1beta.ColumnSpec.display_name]
+ followed by the target column with name in the format of
+ "predicted*\ <[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
+ [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>"
+ The input feature columns will contain the respective values of
+ successfully predicted rows, with the target column having an
+ ARRAY of
+ [AnnotationPayloads][google.cloud.automl.v1p1beta.AnnotationPayload],
+ represented as STRUCT-s, containing
+ [TablesAnnotation][google.cloud.automl.v1p1beta.TablesAnnotation].
+ The ``errors`` table contains rows for which the prediction has
+ failed, it has analogous input columns while the target column
+ name is in the format of
+ "errors_<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
+ [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>",
+ and as a value has
+ ```google.rpc.Status`` `__
+ represented as a STRUCT, and containing only ``code`` and
+ ``message``.
.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields
@@ -1518,10 +1476,8 @@ class ModelExportOutputConfig(proto.Message):
- docker - Used for Docker containers. Use the params field
to customize the container. The container is verified to
work correctly on ubuntu 16.04 operating system. See more
- at [containers
-
- quickstart](https:
- //cloud.google.com/vision/automl/docs/containers-gcs-quickstart)
+ at `containers
+ quickstart `__
- core_ml - Used for iOS mobile devices.
params (Sequence[google.cloud.automl_v1.types.ModelExportOutputConfig.ParamsEntry]):
diff --git a/packages/google-cloud-automl/google/cloud/automl_v1/types/model_evaluation.py b/packages/google-cloud-automl/google/cloud/automl_v1/types/model_evaluation.py
index 07e7e1c4bbb8..2b483a46c18c 100644
--- a/packages/google-cloud-automl/google/cloud/automl_v1/types/model_evaluation.py
+++ b/packages/google-cloud-automl/google/cloud/automl_v1/types/model_evaluation.py
@@ -66,7 +66,6 @@ class ModelEvaluation(proto.Message):
This field is a member of `oneof`_ ``metrics``.
name (str):
Output only. Resource name of the model evaluation. Format:
-
``projects/{project_id}/locations/{location_id}/models/{model_id}/modelEvaluations/{model_evaluation_id}``
annotation_spec_id (str):
Output only. The ID of the annotation spec that the model
@@ -74,7 +73,6 @@ class ModelEvaluation(proto.Message):
model evaluation. For Tables annotation specs in the dataset
do not exist and this ID is always not set, but for
CLASSIFICATION
-
[prediction_type-s][google.cloud.automl.v1.TablesModelMetadata.prediction_type]
the
[display_name][google.cloud.automl.v1.ModelEvaluation.display_name]
@@ -87,7 +85,6 @@ class ModelEvaluation(proto.Message):
trained from the same dataset, the values may differ, since
display names could had been changed between the two model's
trainings. For Tables CLASSIFICATION
-
[prediction_type-s][google.cloud.automl.v1.TablesModelMetadata.prediction_type]
distinct values of the target column at the moment of the
model evaluation are populated here. The display_name is
@@ -104,7 +101,6 @@ class ModelEvaluation(proto.Message):
examples used for evaluation. Otherwise, this is the count
of examples that according to the ground truth were
annotated by the
-
[annotation_spec_id][google.cloud.automl.v1.ModelEvaluation.annotation_spec_id].
"""
diff --git a/packages/google-cloud-automl/google/cloud/automl_v1/types/operations.py b/packages/google-cloud-automl/google/cloud/automl_v1/types/operations.py
index 7e68a1845d8d..14dde2667184 100644
--- a/packages/google-cloud-automl/google/cloud/automl_v1/types/operations.py
+++ b/packages/google-cloud-automl/google/cloud/automl_v1/types/operations.py
@@ -237,7 +237,6 @@ class BatchPredictOperationMetadata(proto.Message):
class BatchPredictOutputInfo(proto.Message):
r"""Further describes this batch predict's output. Supplements
-
[BatchPredictOutputConfig][google.cloud.automl.v1.BatchPredictOutputConfig].
diff --git a/packages/google-cloud-automl/google/cloud/automl_v1/types/prediction_service.py b/packages/google-cloud-automl/google/cloud/automl_v1/types/prediction_service.py
index 30660c699f47..1a8de0e2ca32 100644
--- a/packages/google-cloud-automl/google/cloud/automl_v1/types/prediction_service.py
+++ b/packages/google-cloud-automl/google/cloud/automl_v1/types/prediction_service.py
@@ -68,7 +68,6 @@ class PredictRequest(proto.Message):
AutoML Tables
``feature_importance`` : (boolean) Whether
-
[feature_importance][google.cloud.automl.v1.TablesModelColumnInfo.feature_importance]
is populated in the returned list of
[TablesAnnotation][google.cloud.automl.v1.TablesAnnotation]