diff --git a/notebooks/evaluation_results.ipynb b/notebooks/evaluation_results.ipynb index 217f4933..cce32b5e 100644 --- a/notebooks/evaluation_results.ipynb +++ b/notebooks/evaluation_results.ipynb @@ -31,6 +31,10 @@ "source": [ "# Melting Pot Evaluation Results\n", "\n", + "\u003ca href=\"https://colab.research.google.com/github/google-deepmind/meltingpot/blob/main/notebooks/evaluation_results.ipynb\"\u003e\n", + "\u003cimg src=\"https://colab.research.google.com/assets/colab-badge.svg\"\u003e\n", + "\u003c/a\u003e\n", + "\n", "This Colab plots results of the MAPLA evaluations outlined in the [Melting Pot 2.0 Tech Report](https://arxiv.org/abs/2211.13746).\n", "\n", "1. Click \"Connect\" in the top right corner.\n", @@ -295,7 +299,7 @@ "# @title Make assumptions about missing prosocial runs\n", "\n", "print(\"\"\"\n", - "NOTE: For the collective-return substrates, the prosocial MAPLA receive rewards \n", + "NOTE: For the collective-return substrates, the prosocial MAPLA receive rewards\n", "identical to those received by a non-prosocial variants (except for a scale\n", "factor). Thus, for these substrates, the prosocial MAPLA is identical to the\n", "non-prosocial variant, and we expect they would therefore achieved the same\n", @@ -347,7 +351,7 @@ "\n", " idx = exploiters.apply(lambda row: best_exploiter.loc[row.scenario, row.substrate] == row.mapla, axis=1)\n", " exploiters = exploiters[idx].assign(mapla='exploiter')\n", - " \n", + "\n", " recombined = pd.concat([non_exploiters, exploiters])\n", " return recombined.set_index(['scenario', 'substrate', 'mapla', 'training_run']).sort_index()\n", "\n",