-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
751 lines (658 loc) · 39.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
# -*- coding: utf-8 -*-
# Copyright (c) 2022-present, Machine Learning and Computer Vision Lab, University of Augsburg
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
# author: goldbricklemon
import os
import sys
import numpy as np
import copy
import time
import datetime
import tensorflow as tf
import tensorflow_addons as tfa
from tensorflow import keras
from common.utils import path_utils
from common.utils import time_formatting
from common.utils.metric_history import MetricHistory
from common.net.uplift_upsample_transformer_config import UpliftUpsampleConfig
from common.dataset.keypoint_order import H36MOrder17P
from common.dataset import h36m_splits
from common.dataset.amass_dataset import AMASSDataset
from common.net.uplift_upsample_transformer_constructor import build_uplift_upsample_transformer
from common.utils import schedules
from common.utils import losses_3d
from common.utils import weight_io
from common.dataset import action_wise_eval
from common.dataset.uplifiting_dataset import load_dataset_and_2d_poses, filter_and_subsample_dataset, \
H36mSequenceGenerator, AMASSSequenceGenerator, tf_world_to_cam_and_2d
import eval
def log(*args):
print(*args)
sys.stdout.flush()
def create_h36m_datasets(h36_path, dataset_2d_path, config, train_subset, val_subset, shuffle_seed=0):
# Build h36m dataset
dataset_3d, poses_2d_dataset = load_dataset_and_2d_poses(dataset_path=h36_path, poses_2d_path=dataset_2d_path,
verbose=True)
train_dataset, val_dataset, val_batches = None, None, None
for split, selection in zip(["train", "val"], [train_subset, val_subset]):
if selection is not None:
# The dataset is subsampled to every Nth frame (i.e. a sequence is extracted at every Nth frame)
# The frame rate is not changed, however!
subsample = config.DATASET_TRAIN_3D_SUBSAMPLE_STEP if split == "train" else config.DATASET_VAL_3D_SUBSAMPLE_STEP
shuffle = split == "train"
stride_mask_rand_shift = config.STRIDE_MASK_RAND_SHIFT and split == "train"
subjects = h36m_splits.subjects_by_split[selection]
actions = "*"
camera_params, poses_3d, poses_2d, frame_names, \
sequence_subjects, sequence_actions, sequence_frame_rates = filter_and_subsample_dataset(dataset=dataset_3d,
poses_2d=poses_2d_dataset,
subjects=subjects,
action_filter=actions,
downsample=1,
image_base_path=h36_path,
verbose=True)
# # NOTE: For now, we perform root shift here
# for s_i in range(len(poses_3d)):
# poses_3d[s_i] = poses_3d[s_i][:, :, :] - poses_3d[s_i][:, [config.ROOT_KEYTPOINT], :]
do_flip = split == "train" and config.AUGM_FLIP_PROB > 0
generator = H36mSequenceGenerator(poses_3d, poses_2d,
camera_params=camera_params,
subjects=sequence_subjects,
actions=sequence_actions,
frame_rates=sequence_frame_rates,
split=split,
seq_len=config.SEQUENCE_LENGTH,
target_frame_rate=50,
subsample=subsample,
stride=config.SEQUENCE_STRIDE,
padding_type=config.PADDING_TYPE,
flip_augment=do_flip,
in_batch_augment=config.IN_BATCH_AUGMENT,
flip_lr_indices=config.AUGM_FLIP_KEYPOINT_ORDER,
mask_stride=config.MASK_STRIDE,
stride_mask_align_global=False,
rand_shift_stride_mask=stride_mask_rand_shift,
shuffle=shuffle,
seed=shuffle_seed)
log(f"Sequences: {len(generator)}")
output_sig = (tf.TensorSpec(shape=(config.SEQUENCE_LENGTH, config.NUM_KEYPOINTS, 3), dtype=tf.float32),
tf.TensorSpec(shape=(config.SEQUENCE_LENGTH, config.NUM_KEYPOINTS, 2), dtype=tf.float32),
tf.TensorSpec(shape=(config.SEQUENCE_LENGTH,), dtype=tf.float32),
tf.TensorSpec(shape=(11,), dtype=tf.float32),
tf.TensorSpec(shape=(), dtype=tf.int32),
tf.TensorSpec(shape=(), dtype=tf.int32),
tf.TensorSpec(shape=(), dtype=tf.int32),
tf.TensorSpec(shape=(config.SEQUENCE_LENGTH,), dtype=tf.bool),
)
dataset = tf.data.Dataset.from_generator(generator.next_epoch_iterator, output_signature=output_sig)
if split == "train":
dataset = dataset.repeat()
dataset = dataset.batch(config.BATCH_SIZE)
dataset = dataset.prefetch(buffer_size=tf.data.AUTOTUNE)
train_dataset = dataset
else:
if config.VALIDATION_EXAMPLES < 0:
config.VALIDATION_EXAMPLES = len(generator)
assert config.VALIDATION_EXAMPLES <= len(generator)
val_batches = int(np.ceil(config.VALIDATION_EXAMPLES / config.BATCH_SIZE))
# Repeat once such that the last fractional batch can be extracted
dataset = dataset.repeat(2)
dataset = dataset.batch(config.BATCH_SIZE)
dataset = dataset.take(val_batches)
dataset = dataset.prefetch(buffer_size=tf.data.AUTOTUNE)
val_dataset = dataset
return train_dataset, val_dataset, val_batches
def create_amass_datasets(amass_path, h36_path, config: UpliftUpsampleConfig, train_subset, val_subset,
target_frame_rate, shuffle_seed=0):
# Build amass h36m dataset
h36m_cameras = None
train_dataset, val_dataset, val_batches = None, None, None
for split, selection in zip(["train", "val"], [train_subset, val_subset]):
if selection is not None:
log(f"Loading AMASS dataset for split {selection}")
amass_dataset = AMASSDataset(path=amass_path, h36m_path=h36_path, split=selection,
h36m_cameras=h36m_cameras)
# Cache cameras to avoid reloading the entire h36m dataset
h36m_cameras = amass_dataset.cameras()
# The dataset is subsampled to every Nth frame (i.e. a sequence is extracted at every Nth frame)
# The frame rate is not changed, however!
stride = config.DATASET_TRAIN_3D_SUBSAMPLE_STEP if split == "train" else config.DATASET_VAL_3D_SUBSAMPLE_STEP
shuffle = split == "train"
stride_mask_rand_shift = config.STRIDE_MASK_RAND_SHIFT and split == "train"
do_flip = split == "train" and config.AUGM_FLIP_PROB > 0
generator = AMASSSequenceGenerator(amass_dataset=amass_dataset,
seq_len=config.SEQUENCE_LENGTH,
target_frame_rate=target_frame_rate,
subsample=stride,
stride=config.SEQUENCE_STRIDE,
padding_type=config.PADDING_TYPE,
flip_augment=do_flip,
in_batch_augment=config.IN_BATCH_AUGMENT,
flip_lr_indices=H36MOrder17P.flip_lr_indices(),
mask_stride=config.MASK_STRIDE,
stride_mask_align_global=False,
rand_shift_stride_mask=stride_mask_rand_shift,
shuffle=shuffle,
seed=shuffle_seed)
log(f"Sequences: {len(generator)}")
output_sig = (tf.TensorSpec(shape=(config.SEQUENCE_LENGTH, config.NUM_KEYPOINTS, 3), dtype=tf.float32),
tf.TensorSpec(shape=(18,), dtype=tf.float32),
tf.TensorSpec(shape=(config.SEQUENCE_LENGTH,), dtype=tf.float32),
tf.TensorSpec(shape=(), dtype=tf.int32),
tf.TensorSpec(shape=(), dtype=tf.int32),
tf.TensorSpec(shape=(), dtype=tf.int32),
tf.TensorSpec(shape=(config.SEQUENCE_LENGTH,), dtype=tf.bool),
)
dataset = tf.data.Dataset.from_generator(generator.next_epoch_iterator, output_signature=output_sig)
dataset = dataset.map(tf_world_to_cam_and_2d, num_parallel_calls=tf.data.AUTOTUNE)
if split == "train":
dataset = dataset.repeat()
dataset = dataset.batch(config.BATCH_SIZE)
dataset = dataset.prefetch(buffer_size=tf.data.AUTOTUNE)
train_dataset = dataset
else:
if config.VALIDATION_EXAMPLES < 0:
config.VALIDATION_EXAMPLES = len(generator)
assert config.VALIDATION_EXAMPLES <= len(generator)
val_batches = int(np.ceil(config.VALIDATION_EXAMPLES / config.BATCH_SIZE))
# Repeat once such that the last fractional batch can be extracted
dataset = dataset.repeat(2)
dataset = dataset.batch(config.BATCH_SIZE)
dataset = dataset.take(val_batches)
dataset = dataset.prefetch(buffer_size=tf.data.AUTOTUNE)
val_dataset = dataset
return train_dataset, val_dataset, val_batches
if __name__ == '__main__':
import argparse
# Parse command line arguments
parser = argparse.ArgumentParser(
description='2D-to-3D uplifting training for strided poseformer.')
parser.add_argument('--config', required=False,
default=None,
metavar="/path/to/config.json",
help="Path to the config file. Overwrites the default configs in the code.")
parser.add_argument('--gpu_id', required=False,
default=None,
metavar="gpu_id",
help='Overwrites the GPU_ID from the config',
type=str)
parser.add_argument('--dataset', required=False,
default="h36m",
metavar="{h36m, amass}",
help='Dataset used for training')
parser.add_argument('--dataset_val', required=False,
default=None,
metavar="{h36m, amass}",
help='Dataset used for validation')
parser.add_argument('--h36m_path', required=False,
default="./data/data_3d_h36m.npz",
metavar="/path/to/h36m/",
help='Directory of the H36m dataset')
parser.add_argument('--amass_path', required=False,
default=None,
metavar="/path/to/amass/",
help='Directory of the AMASS dataset')
parser.add_argument('--amass_frame_rate', required=False,
default="50",
metavar="<r>",
help='Target frame rate for amass training')
parser.add_argument('--dataset_2d_path', required=False,
default="./data/data_2d_h36m_cpn_ft_h36m_dbb.npz",
metavar="/path/to/2d poses/",
help='2D pose dataset')
parser.add_argument('--train_subset', required=False,
default="train",
metavar="<name of train subset>",
help="Name of the dataset subset to train on")
parser.add_argument('--val_subset', required=False,
default="val",
metavar="<name of val subset>",
help="Name of the dataset subset to validate on\
pass an empty string or \"none\" to disable validation.")
parser.add_argument('--test_subset', required=False,
default=None,
metavar="<name of test subset>",
help="Name of the dataset subset to test on\
pass an empty string or \"none\" to disable test evaluation.")
parser.add_argument('--weights', required=False,
default=None,
metavar="/path/to/weights.h5",
help="Path to weights .h5 file for model weight initialization.")
parser.add_argument('--continue_training', required=False,
default=False,
metavar="<True|False>",
help="Try to continue a previously started training, \
mainly loading the weights, optimizer state and epoch number of the latest epoch.")
parser.add_argument('--out_dir', required=True,
metavar="/path/to/output_directory",
help='Logs and checkpoint directory. Also used to search for checkpoints if continue_training is set.')
args = parser.parse_args()
args.continue_training = args.continue_training not in [False, "False", "false", "f", "n", "0"]
args.val_subset = None if args.val_subset in ["none", "None", "", 0] else args.val_subset
args.test_subset = None if args.test_subset in ["none", "None", "", 0] else args.test_subset
args.dataset = args.dataset.lower()
args.dataset_val = args.dataset_val.lower() if args.dataset_val is not None else None
val_dataset_name = args.dataset if args.dataset_val is None else args.dataset_val
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
log(current_time)
log("Config: ", args.config)
log("GPU ID: ", args.gpu_id)
log("Dataset: ", args.dataset)
log("Dataset Val: ", args.dataset_val)
log("Dataset H36m: ", args.h36m_path)
log("Dataset AMASS: ", args.amass_path)
log("AMASS frame rate: ", args.amass_frame_rate)
log("Dataset 2D: ", args.dataset_2d_path)
log("Train subset:", args.train_subset)
log("Val subset:", args.val_subset)
log("Test subset:", args.test_subset)
log("Weights:", args.weights)
log("Continue Training: ", args.continue_training)
log("Output directory ", args.out_dir)
assert args.dataset in ["h36m", "amass"]
assert args.dataset_val in [None, "h36m", "amass"]
# Make absolute paths
if args.dataset in ["h36m"] or args.dataset_val in ["h36m"]:
assert args.dataset_2d_path is not None
elif args.dataset == "amass" or args.dataset_val == "amass":
assert args.amass_path is not None
args.amass_frame_rate = int(args.amass_frame_rate)
else:
raise ValueError(f"{args.dataset} is not included in supported datasets.")
args.h36m_path = path_utils.expandpath(args.h36m_path)
if args.amass_path is not None:
args.amass_path = path_utils.expandpath(args.amass_path)
if args.dataset_2d_path is not None:
args.dataset_2d_path = path_utils.expandpath(args.dataset_2d_path)
if args.config is not None:
args.config = path_utils.expandpath(args.config)
if args.weights is not None:
args.weights = path_utils.expandpath(args.weights)
args.out_dir = path_utils.expandpath(args.out_dir)
# Create output directory
path_utils.mkdirs(args.out_dir)
# Resolve weight path
args.weights = weight_io.resolve_weight_selector(args.weights)
# Configuration
config = UpliftUpsampleConfig(config_file=args.config)
assert config.ARCH == "UpliftUpsampleTransformer"
if args.gpu_id is not None:
assert args.gpu_id.isalnum()
config.GPU_ID = int(args.gpu_id)
if val_dataset_name not in ["h36m"] and config.BEST_CHECKPOINT_METRIC is not None:
config.BEST_CHECKPOINT_METRIC = config.BEST_CHECKPOINT_METRIC.replace("AW-", "")
# TODO: Set flip order in config.json, not in code
config.AUGM_FLIP_KEYPOINT_ORDER = H36MOrder17P.flip_lr_indices()
# Dump complete config to json file (for archiving)
if args.config:
split = os.path.split(args.config)
split_ext = os.path.splitext(split[1])
out_path = os.path.join(args.out_dir, split_ext[0] + "_complete.json")
else:
out_path = os.path.join(args.out_dir, "config_complete.json")
config.dump(config_file=out_path)
# Print config
config.display()
# Set GPU
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = str(config.GPU_ID)
gpus = tf.config.experimental.list_physical_devices('GPU')
assert len(gpus) == 1
if gpus:
try:
# Currently, memory growth needs to be the same across GPUs
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
except RuntimeError as e:
log(e)
val_subset_name = None if args.dataset_val is not None else args.val_subset
if args.dataset == "h36m":
train_dataset, val_dataset, val_batches = create_h36m_datasets(h36_path=args.h36m_path,
dataset_2d_path=args.dataset_2d_path,
config=config,
train_subset=args.train_subset,
val_subset=val_subset_name,
shuffle_seed=config.SHUFFLE_SEED)
else:
train_dataset, val_dataset, val_batches = create_amass_datasets(amass_path=args.amass_path,
h36_path=args.h36m_path,
config=config,
train_subset=args.train_subset,
val_subset=val_subset_name,
target_frame_rate=args.amass_frame_rate,
shuffle_seed=config.SHUFFLE_SEED)
if args.dataset_val is not None:
if args.dataset_val == "h36m":
_, val_dataset, val_batches = create_h36m_datasets(h36_path=args.h36m_path,
dataset_2d_path=args.dataset_2d_path,
config=config,
train_subset=None,
val_subset=args.val_subset,
shuffle_seed=config.SHUFFLE_SEED)
else:
_, val_dataset, val_batches = create_amass_datasets(amass_path=args.amass_path,
h36_path=args.h36m_path,
config=config,
train_subset=None,
val_subset=args.val_subset,
target_frame_rate=args.amass_frame_rate,
shuffle_seed=config.SHUFFLE_SEED)
print("val batches", val_batches)
# Build model, optimizer, checkpoint
tf_device = "/gpu:0"
with tf.device(tf_device):
model = build_uplift_upsample_transformer(config=config)
if args.weights is not None:
log(f"Loading weights from {args.weights}")
weight_io.load_weights_with_callback(model, filepath=args.weights, skip_mismatch=False)
val_model = model
# Keep an exponential moving average of the actual model
if config.EMA_ENABLED is True:
log("Cloning EMA model.")
ema_model = build_uplift_upsample_transformer(config=config)
# Copy weights
ema_model.set_weights(model.get_weights())
val_model = ema_model
# Create LR Schedule
lr_schedule = schedules.scheduler_by_name(config.SCHEDULE)(**config.SCHEDULE_PARAMS)
log(f"Using {config.OPTIMIZER} optimizer")
if config.OPTIMIZER == "AdamW":
wd_params = copy.deepcopy(config.SCHEDULE_PARAMS)
wd_params["initial_learning_rate"] = config.WEIGHT_DECAY
log(wd_params)
wd_schedule = schedules.scheduler_by_name(config.SCHEDULE)(**wd_params)
optimizer = tfa.optimizers.AdamW(weight_decay=wd_schedule,
learning_rate=lr_schedule,
epsilon=1e-8,
**config.OPTIMIZER_PARAMS)
elif config.OPTIMIZER == "Adam":
optimizer = keras.optimizers.Adam(learning_rate=lr_schedule, **config.OPTIMIZER_PARAMS)
else:
raise ValueError(config.OPTIMIZER)
ckp_dict = {"optimizer": optimizer,
"model": model}
if config.EMA_ENABLED is True:
ckp_dict["ema_model"] = ema_model
checkpoint = tf.train.Checkpoint(**ckp_dict)
checkpoint_dir = os.path.join(args.out_dir, "checkpoints")
path_utils.mkdirs(checkpoint_dir)
checkpoint_template = os.path.join(checkpoint_dir, "cp_{:04d}.ckpt")
initial_epoch = 1
if args.continue_training:
ckp_path = tf.train.latest_checkpoint(checkpoint_dir)
assert ckp_path is not None, "Cant find checkpoint to continue training"
log(f"Restoring checkpoint from {ckp_path}")
checkpoint.restore(ckp_path)
initial_epoch = int(os.path.splitext(ckp_path)[0][-4:]) + 1
log(f"Will continue training from epoch {initial_epoch}")
global_step = (initial_epoch - 1) * config.STEPS_PER_EPOCH
# Metrics and Tensorboard
train_epoch_loss = keras.metrics.Mean()
val_run_loss = keras.metrics.Mean()
tb_log_dir = os.path.join(args.out_dir, "tb_" + current_time)
tb_writer = tf.summary.create_file_writer(tb_log_dir)
prev_best_weights_path = None
last_weights_path = None
metric_hist = MetricHistory()
metrics = ["loss", "MPJPE", "NMPJPE", "PAMPJPE"]
higher_is_better = [False, False, False, False]
if val_dataset_name == "h36m":
metrics += ["AW-MPJPE", "AW-NMPJPE", "AW-PAMPJPE"]
higher_is_better += [False, False, False]
for m, h in zip(metrics,
higher_is_better):
metric_hist.add_metric(m, higher_is_better=h)
if config.BEST_CHECKPOINT_METRIC is not None:
assert config.BEST_CHECKPOINT_METRIC in metrics
@tf.function
def train_step(keypoints2d, keypoints3d, stride_masks, cams, ema_decay):
absolute_keypoints3d = keypoints3d
keypoints3d = keypoints3d - keypoints3d[:, :, config.ROOT_KEYTPOINT: config.ROOT_KEYTPOINT + 1, :]
mid_index = config.SEQUENCE_LENGTH // 2
central_keypoints_3d = keypoints3d[:, mid_index]
model_input = keypoints2d
if model.has_strided_input:
# Stride mask is 1 on valid (i.e. non-masked) indices !!!
masked_keypoints2d = keypoints2d * tf.cast(stride_masks[:, :, tf.newaxis, tf.newaxis], dtype=tf.float32)
model_input = [masked_keypoints2d, stride_masks]
with tf.GradientTape() as tape:
pred_keypoints_3d, pred_keypoints_3d_central = model(model_input, training=True)
# central_loss is: (B, K)
central_loss = losses_3d.tf_mpjpe(pred=pred_keypoints_3d_central, gt=central_keypoints_3d)
# Aggregate loss over keypoints and batch
central_loss = tf.math.reduce_sum(central_loss) / (config.BATCH_SIZE * config.NUM_KEYPOINTS)
if config.TEMPORAL_TRANSFORMER_BLOCKS > 0:
# sequence_loss is: (B, N, K)
sequence_loss = losses_3d.tf_mpjpe(pred=pred_keypoints_3d, gt=keypoints3d)
# Aggregate loss over keypoints, sequence and batch
sequence_loss = tf.math.reduce_sum(sequence_loss) / (
config.BATCH_SIZE * config.SEQUENCE_LENGTH * config.NUM_KEYPOINTS)
loss = (config.LOSS_WEIGHT_CENTER * central_loss) + (config.LOSS_WEIGHT_SEQUENCE * sequence_loss)
else:
# Fallback without temporal transformer blocks: disable sequence loss
loss = (config.LOSS_WEIGHT_CENTER + config.LOSS_WEIGHT_SEQUENCE) * central_loss
trainable_variables = model.trainable_variables
gradients = tape.gradient(loss, trainable_variables)
optimizer.apply_gradients(zip(gradients, trainable_variables))
train_epoch_loss.update_state(loss)
if config.EMA_ENABLED is True:
for w, ema_w in zip(model.weights, ema_model.weights):
ema_w.assign_sub((1 - ema_decay) * (ema_w - w))
return loss
@tf.function
def val_step(keypoints2d, keypoints3d, stride_masks):
keypoints3d = keypoints3d - keypoints3d[:, :, config.ROOT_KEYTPOINT: config.ROOT_KEYTPOINT + 1, :]
mid_index = config.SEQUENCE_LENGTH // 2
central_keypoints_3d = keypoints3d[:, mid_index]
model_input = keypoints2d
if model.has_strided_input:
masked_keypoints2d = keypoints2d * tf.cast(stride_masks[:, :, tf.newaxis, tf.newaxis], dtype=tf.float32)
model_input = [masked_keypoints2d, stride_masks]
pred_keypoints_3d, pred_keypoints_3d_central = val_model(model_input, training=False)
# central_loss is: (B, K)
central_loss = losses_3d.tf_mpjpe(pred=pred_keypoints_3d_central, gt=central_keypoints_3d)
# Aggregate loss over keypoints and batch
central_loss = tf.math.reduce_sum(central_loss) / (config.BATCH_SIZE * config.NUM_KEYPOINTS)
loss = central_loss
if config.TEMPORAL_TRANSFORMER_BLOCKS > 0:
# sequence_loss is: (B, N, K)
sequence_loss = losses_3d.tf_mpjpe(pred=pred_keypoints_3d, gt=keypoints3d)
# Aggregate loss over keypoints, sequence and batch
sequence_loss = tf.math.reduce_sum(sequence_loss) / (
config.BATCH_SIZE * config.SEQUENCE_LENGTH * config.NUM_KEYPOINTS)
loss = central_loss + sequence_loss
else:
loss = central_loss
val_run_loss.update_state(loss)
return pred_keypoints_3d_central
# Train loop
train_dataset_iter = iter(train_dataset)
ema_decay = tf.constant(0.0, dtype=tf.float32)
mid_index = config.SEQUENCE_LENGTH // 2
epoch_duration = 0.
# Epochs use 1-based index
for epoch in range(initial_epoch, config.EPOCHS + 1):
train_epoch_loss.reset_states()
epoch_start = time.time()
log(f"## EPOCH {epoch} / {config.EPOCHS}")
# (Global) Steps use 0-based index
for iteration in range(config.STEPS_PER_EPOCH):
tick = time.time()
if config.EMA_ENABLED:
ema_decay = tf.constant(min(config.EMA_DECAY, (1.0 + global_step) / (10.0 + global_step)),
dtype=tf.float32)
sequences_3d, sequences_2d, sequences_mask, sequence_camera_params, _, _, _, stride_masks = next(
train_dataset_iter)
loss = train_step(keypoints2d=sequences_2d, keypoints3d=sequences_3d,
stride_masks=stride_masks, cams=sequence_camera_params,
ema_decay=ema_decay)
tock = time.time()
step_duration = tock - tick
epoch_duration = tock - epoch_start
if iteration % 10 == 0:
eta = ((config.STEPS_PER_EPOCH - iteration - 1) / (iteration + 1)) * epoch_duration
eta_string = time_formatting.format_time(eta)
log(f"{iteration}/{config.STEPS_PER_EPOCH} @ Epoch {epoch} "
f"(Step {step_duration:.3f}s, ETA {eta_string}): "
f"Mean loss {float(train_epoch_loss.result()):.6f}")
global_step += 1
# Checkpoint
if epoch % config.CHECKPOINT_INTERVAL == 0:
save_path = checkpoint.save(checkpoint_template.format(epoch))
log("Saving checkpoint to ", save_path)
if config.STEPS_PER_EPOCH > 0:
epoch_duration_string = time_formatting.format_time(epoch_duration)
mean_step_duration_string = epoch_duration / config.STEPS_PER_EPOCH
log(f"Finished epoch {epoch} in {epoch_duration_string}, {mean_step_duration_string:.3f}s/step")
with tb_writer.as_default():
tf.summary.scalar('train/loss', train_epoch_loss.result(), step=epoch)
tf.summary.scalar('train/LR', float(optimizer._decayed_lr(var_dtype=tf.float32)), step=epoch)
if config.OPTIMIZER == "AdamW":
tf.summary.scalar('train/WD', float(optimizer._decayed_wd(var_dtype=tf.float32)), step=epoch)
tf.summary.scalar('train/step_duration', epoch_duration / config.STEPS_PER_EPOCH, step=epoch)
if epoch % config.VALIDATION_INTERVAL == 0 and args.val_subset is not None:
log(f"Running validation on {config.VALIDATION_EXAMPLES} examples")
val_start = time.time()
val_run_loss.reset_states()
val_gt_keypoints3d = list()
val_pred_keypoints3d = list()
val_gt_subjects = list()
val_gt_actions = list()
examples = 0
for b_i, (
val_sequences_3d, val_sequences_2d, val_sequences_mask,
val_sequence_camera_params, val_sequence_subjects, val_sequence_actions, _,
val_stride_masks) in enumerate(
val_dataset):
pred_keypoints3d = val_step(keypoints2d=val_sequences_2d, keypoints3d=val_sequences_3d,
stride_masks=val_stride_masks)
if config.EVAL_FLIP is True:
flipped_sequences_2d = val_sequences_2d
flipped_sequences_2d = tf.concat([flipped_sequences_2d[:, :, :, :1] * -1.,
flipped_sequences_2d[:, :, :, 1:]], axis=-1)
flipped_sequences_2d = tf.gather(flipped_sequences_2d, indices=config.AUGM_FLIP_KEYPOINT_ORDER,
axis=2)
flipped_sequences_3d = val_sequences_3d
flipped_sequences_3d = tf.concat([flipped_sequences_3d[:, :, :, :1] * -1.,
flipped_sequences_3d[:, :, :, 1:]], axis=-1)
flipped_sequences_3d = tf.gather(flipped_sequences_3d, indices=config.AUGM_FLIP_KEYPOINT_ORDER,
axis=2)
flipped_pred_keypoints_3d = val_step(keypoints2d=flipped_sequences_2d,
keypoints3d=flipped_sequences_3d,
stride_masks=val_stride_masks)
flipped_pred_keypoints_3d = tf.concat([flipped_pred_keypoints_3d[:, :, :1] * -1.,
flipped_pred_keypoints_3d[:, :, 1:]], axis=-1)
flipped_pred_keypoints_3d = tf.gather(flipped_pred_keypoints_3d,
indices=config.AUGM_FLIP_KEYPOINT_ORDER, axis=1)
pred_keypoints3d += flipped_pred_keypoints_3d
pred_keypoints3d /= 2.
# Only collect as many examples as needed
examples_to_include = min(config.BATCH_SIZE, config.VALIDATION_EXAMPLES - examples)
# Perform root-shift right before metric calculation
val_sequences_3d = val_sequences_3d - val_sequences_3d[:, :,
config.ROOT_KEYTPOINT: config.ROOT_KEYTPOINT + 1, :]
val_central_keypoints_3d = val_sequences_3d[:, mid_index]
val_gt_keypoints3d.extend(val_central_keypoints_3d[:examples_to_include].numpy())
val_pred_keypoints3d.extend(pred_keypoints3d[:examples_to_include].numpy())
val_gt_subjects.extend(val_sequence_subjects[:examples_to_include].numpy())
val_gt_actions.extend(val_sequence_actions[:examples_to_include].numpy())
examples += examples_to_include
val_gt_keypoints3d = np.stack(val_gt_keypoints3d, axis=0).astype(np.float64)
# Add dummy valid flag
val_gt_keypoints3d = np.concatenate([val_gt_keypoints3d, np.ones(val_gt_keypoints3d.shape[:-1] + (1,))],
axis=-1)
val_pred_keypoints3d = np.stack(val_pred_keypoints3d, axis=0).astype(np.float64)
val_gt_subjects = np.stack(val_gt_subjects, axis=0)
val_gt_actions = np.stack(val_gt_actions, axis=0)
assert b_i == (val_batches - 1)
if val_dataset_name == "h36m":
# Run H36m 3D evaluation
frame_results, action_wise_results, _ = action_wise_eval.h36_action_wise_eval(
pred_3d=val_pred_keypoints3d,
gt_3d=val_gt_keypoints3d,
actions=val_gt_actions,
root_index=config.ROOT_KEYTPOINT)
else:
frame_results = action_wise_eval.frame_wise_eval(
pred_3d=val_pred_keypoints3d,
gt_3d=val_gt_keypoints3d,
root_index=config.ROOT_KEYTPOINT)
val_duration = time.time() - val_start
val_duration_string = time_formatting.format_time(val_duration)
log(
f"Finished validation in {val_duration_string}, loss: {float(val_run_loss.result()):.6f}, "
f"MPJPE: {frame_results['mpjpe']:.2f}, "
f"NMPJPE: {frame_results['nmpjpe']:.2f}, "
f"PAMPJPE: {frame_results['pampjpe']:.2f}, "
)
if val_dataset_name == "h36m":
log(
f"AW-MPJPE: {action_wise_results['mpjpe']:.2f}, "
f"AW-NMPJPE: {action_wise_results['nmpjpe']:.2f}, "
f"AW-PAMPJPE: {action_wise_results['pampjpe']:.2f}, "
)
with tb_writer.as_default():
tf.summary.scalar('val/loss', val_run_loss.result(), step=epoch)
tf.summary.scalar('val/MPJPE', frame_results['mpjpe'], step=epoch)
tf.summary.scalar('val/NMPJPE', frame_results['nmpjpe'], step=epoch)
tf.summary.scalar('val/PAMPJPE', frame_results['pampjpe'], step=epoch)
if val_dataset_name == "h36m":
tf.summary.scalar('val/AW-MPJPE', action_wise_results['mpjpe'], step=epoch)
tf.summary.scalar('val/AW-NMPJPE', action_wise_results['nmpjpe'], step=epoch)
tf.summary.scalar('val/AW-PAMPJPE', action_wise_results['pampjpe'], step=epoch)
metric_hist.add_data("loss", value=val_run_loss.result(), step=epoch)
metric_hist.add_data("MPJPE", value=frame_results['mpjpe'], step=epoch)
metric_hist.add_data("NMPJPE", value=frame_results['nmpjpe'], step=epoch)
metric_hist.add_data("PAMPJPE", value=frame_results['pampjpe'], step=epoch)
if val_dataset_name == "h36m":
metric_hist.add_data("AW-MPJPE", value=action_wise_results['mpjpe'], step=epoch)
metric_hist.add_data("AW-NMPJPE", value=action_wise_results['nmpjpe'], step=epoch)
metric_hist.add_data("AW-PAMPJPE", value=action_wise_results['pampjpe'], step=epoch)
if config.BEST_CHECKPOINT_METRIC is not None and args.val_subset is not None:
# Save best checkpoint as .h5
best_value, best_epoch = metric_hist.best_value(config.BEST_CHECKPOINT_METRIC)
if best_epoch == epoch:
print(
f"Saving currently best checkpoint @ epoch {best_epoch} ({config.BEST_CHECKPOINT_METRIC}: {best_value}) as .h5:")
weights_path = os.path.join(checkpoint_dir, f"best_weights_{best_epoch:04d}.h5")
print(weights_path)
val_model.save_weights(weights_path)
if prev_best_weights_path is not None:
os.remove(prev_best_weights_path)
prev_best_weights_path = weights_path
print(f"Saving last checkpoint @ epoch {epoch} as .h5:")
if last_weights_path is not None:
os.remove(last_weights_path)
last_weights_path = os.path.join(checkpoint_dir, f"last_weights_{epoch:04d}.h5")
print(last_weights_path)
val_model.save_weights(last_weights_path)
del train_dataset_iter
del train_dataset
del val_dataset
tb_writer.close()
if args.val_subset is not None:
log(f"Best checkpoint results:")
if config.BEST_CHECKPOINT_METRIC is not None:
metric_hist.print_all_for_best_metric(metric=config.BEST_CHECKPOINT_METRIC)
else:
metric_hist.print_best()
if args.test_subset is not None and val_dataset_name in ["h36m"]:
if config.BEST_CHECKPOINT_METRIC is not None and args.val_subset is not None:
print("Eval best weights")
eval_weights_path = prev_best_weights_path
else:
print("Eval last weights")
eval_weights_path = last_weights_path
eval.run_eval_multi_mask_stride(config=config,
dataset_name=val_dataset_name,
dataset_path=args.h36m_path,
dataset2d_path=args.dataset_2d_path,
test_subset=args.test_subset,
weights_path=eval_weights_path,
model=None,
action_wise=True)
log("Done.")