-
Notifications
You must be signed in to change notification settings - Fork 17.8k
/
Copy pathsubr.go
1890 lines (1658 loc) · 43.4 KB
/
subr.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/compile/internal/types"
"cmd/internal/objabi"
"cmd/internal/src"
"crypto/md5"
"encoding/binary"
"fmt"
"os"
"runtime/debug"
"sort"
"strconv"
"strings"
"sync"
"unicode"
"unicode/utf8"
)
type Error struct {
pos src.XPos
msg string
}
var errors []Error
// largeStack is info about a function whose stack frame is too large (rare).
type largeStack struct {
locals int64
args int64
callee int64
pos src.XPos
}
var (
largeStackFramesMu sync.Mutex // protects largeStackFrames
largeStackFrames []largeStack
)
func errorexit() {
flusherrors()
if outfile != "" {
os.Remove(outfile)
}
os.Exit(2)
}
func adderrorname(n *Node) {
if n.Op != ODOT {
return
}
old := fmt.Sprintf("%v: undefined: %v\n", n.Line(), n.Left)
if len(errors) > 0 && errors[len(errors)-1].pos.Line() == n.Pos.Line() && errors[len(errors)-1].msg == old {
errors[len(errors)-1].msg = fmt.Sprintf("%v: undefined: %v in %v\n", n.Line(), n.Left, n)
}
}
func adderr(pos src.XPos, format string, args ...interface{}) {
errors = append(errors, Error{
pos: pos,
msg: fmt.Sprintf("%v: %s\n", linestr(pos), fmt.Sprintf(format, args...)),
})
}
// byPos sorts errors by source position.
type byPos []Error
func (x byPos) Len() int { return len(x) }
func (x byPos) Less(i, j int) bool { return x[i].pos.Before(x[j].pos) }
func (x byPos) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
// flusherrors sorts errors seen so far by line number, prints them to stdout,
// and empties the errors array.
func flusherrors() {
Ctxt.Bso.Flush()
if len(errors) == 0 {
return
}
sort.Stable(byPos(errors))
for i, err := range errors {
if i == 0 || err.msg != errors[i-1].msg {
fmt.Printf("%s", err.msg)
}
}
errors = errors[:0]
}
func hcrash() {
if Debug['h'] != 0 {
flusherrors()
if outfile != "" {
os.Remove(outfile)
}
var x *int
*x = 0
}
}
func linestr(pos src.XPos) string {
return Ctxt.OutermostPos(pos).Format(Debug['C'] == 0, Debug['L'] == 1)
}
// lasterror keeps track of the most recently issued error.
// It is used to avoid multiple error messages on the same
// line.
var lasterror struct {
syntax src.XPos // source position of last syntax error
other src.XPos // source position of last non-syntax error
msg string // error message of last non-syntax error
}
// sameline reports whether two positions a, b are on the same line.
func sameline(a, b src.XPos) bool {
p := Ctxt.PosTable.Pos(a)
q := Ctxt.PosTable.Pos(b)
return p.Base() == q.Base() && p.Line() == q.Line()
}
func yyerrorl(pos src.XPos, format string, args ...interface{}) {
msg := fmt.Sprintf(format, args...)
if strings.HasPrefix(msg, "syntax error") {
nsyntaxerrors++
// only one syntax error per line, no matter what error
if sameline(lasterror.syntax, pos) {
return
}
lasterror.syntax = pos
} else {
// only one of multiple equal non-syntax errors per line
// (flusherrors shows only one of them, so we filter them
// here as best as we can (they may not appear in order)
// so that we don't count them here and exit early, and
// then have nothing to show for.)
if sameline(lasterror.other, pos) && lasterror.msg == msg {
return
}
lasterror.other = pos
lasterror.msg = msg
}
adderr(pos, "%s", msg)
hcrash()
nerrors++
if nsavederrors+nerrors >= 10 && Debug['e'] == 0 {
flusherrors()
fmt.Printf("%v: too many errors\n", linestr(pos))
errorexit()
}
}
func yyerrorv(lang string, format string, args ...interface{}) {
what := fmt.Sprintf(format, args...)
yyerrorl(lineno, "%s requires %s or later (-lang was set to %s; check go.mod)", what, lang, flag_lang)
}
func yyerror(format string, args ...interface{}) {
yyerrorl(lineno, format, args...)
}
func Warn(fmt_ string, args ...interface{}) {
Warnl(lineno, fmt_, args...)
}
func Warnl(line src.XPos, fmt_ string, args ...interface{}) {
adderr(line, fmt_, args...)
if Debug['m'] != 0 {
flusherrors()
}
}
func Fatalf(fmt_ string, args ...interface{}) {
flusherrors()
if Debug_panic != 0 || nsavederrors+nerrors == 0 {
fmt.Printf("%v: internal compiler error: ", linestr(lineno))
fmt.Printf(fmt_, args...)
fmt.Printf("\n")
// If this is a released compiler version, ask for a bug report.
if strings.HasPrefix(objabi.Version, "go") {
fmt.Printf("\n")
fmt.Printf("Please file a bug report including a short program that triggers the error.\n")
fmt.Printf("https://golang.org/issue/new\n")
} else {
// Not a release; dump a stack trace, too.
fmt.Println()
os.Stdout.Write(debug.Stack())
fmt.Println()
}
}
hcrash()
errorexit()
}
// hasUniquePos reports whether n has a unique position that can be
// used for reporting error messages.
//
// It's primarily used to distinguish references to named objects,
// whose Pos will point back to their declaration position rather than
// their usage position.
func hasUniquePos(n *Node) bool {
switch n.Op {
case ONAME, OPACK:
return false
case OLITERAL, OTYPE:
if n.Sym != nil {
return false
}
}
if !n.Pos.IsKnown() {
if Debug['K'] != 0 {
Warn("setlineno: unknown position (line 0)")
}
return false
}
return true
}
func setlineno(n *Node) src.XPos {
lno := lineno
if n != nil && hasUniquePos(n) {
lineno = n.Pos
}
return lno
}
func lookup(name string) *types.Sym {
return localpkg.Lookup(name)
}
// lookupN looks up the symbol starting with prefix and ending with
// the decimal n. If prefix is too long, lookupN panics.
func lookupN(prefix string, n int) *types.Sym {
var buf [20]byte // plenty long enough for all current users
copy(buf[:], prefix)
b := strconv.AppendInt(buf[:len(prefix)], int64(n), 10)
return localpkg.LookupBytes(b)
}
// autolabel generates a new Name node for use with
// an automatically generated label.
// prefix is a short mnemonic (e.g. ".s" for switch)
// to help with debugging.
// It should begin with "." to avoid conflicts with
// user labels.
func autolabel(prefix string) *types.Sym {
if prefix[0] != '.' {
Fatalf("autolabel prefix must start with '.', have %q", prefix)
}
fn := Curfn
if Curfn == nil {
Fatalf("autolabel outside function")
}
n := fn.Func.Label
fn.Func.Label++
return lookupN(prefix, int(n))
}
func restrictlookup(name string, pkg *types.Pkg) *types.Sym {
if !types.IsExported(name) && pkg != localpkg {
yyerror("cannot refer to unexported name %s.%s", pkg.Name, name)
}
return pkg.Lookup(name)
}
// find all the exported symbols in package opkg
// and make them available in the current package
func importdot(opkg *types.Pkg, pack *Node) {
n := 0
for _, s := range opkg.Syms {
if s.Def == nil {
continue
}
if !types.IsExported(s.Name) || strings.ContainsRune(s.Name, 0xb7) { // 0xb7 = center dot
continue
}
s1 := lookup(s.Name)
if s1.Def != nil {
pkgerror := fmt.Sprintf("during import %q", opkg.Path)
redeclare(lineno, s1, pkgerror)
continue
}
s1.Def = s.Def
s1.Block = s.Block
if asNode(s1.Def).Name == nil {
Dump("s1def", asNode(s1.Def))
Fatalf("missing Name")
}
asNode(s1.Def).Name.Pack = pack
s1.Origpkg = opkg
n++
}
if n == 0 {
// can't possibly be used - there were no symbols
yyerrorl(pack.Pos, "imported and not used: %q", opkg.Path)
}
}
func nod(op Op, nleft, nright *Node) *Node {
return nodl(lineno, op, nleft, nright)
}
func nodl(pos src.XPos, op Op, nleft, nright *Node) *Node {
var n *Node
switch op {
case OCLOSURE, ODCLFUNC:
var x struct {
n Node
f Func
}
n = &x.n
n.Func = &x.f
case ONAME:
Fatalf("use newname instead")
case OLABEL, OPACK:
var x struct {
n Node
m Name
}
n = &x.n
n.Name = &x.m
default:
n = new(Node)
}
n.Op = op
n.Left = nleft
n.Right = nright
n.Pos = pos
n.Xoffset = BADWIDTH
n.Orig = n
return n
}
// newname returns a new ONAME Node associated with symbol s.
func newname(s *types.Sym) *Node {
n := newnamel(lineno, s)
n.Name.Curfn = Curfn
return n
}
// newname returns a new ONAME Node associated with symbol s at position pos.
// The caller is responsible for setting n.Name.Curfn.
func newnamel(pos src.XPos, s *types.Sym) *Node {
if s == nil {
Fatalf("newnamel nil")
}
var x struct {
n Node
m Name
p Param
}
n := &x.n
n.Name = &x.m
n.Name.Param = &x.p
n.Op = ONAME
n.Pos = pos
n.Orig = n
n.Sym = s
return n
}
// nodSym makes a Node with Op op and with the Left field set to left
// and the Sym field set to sym. This is for ODOT and friends.
func nodSym(op Op, left *Node, sym *types.Sym) *Node {
n := nod(op, left, nil)
n.Sym = sym
return n
}
// rawcopy returns a shallow copy of n.
// Note: copy or sepcopy (rather than rawcopy) is usually the
// correct choice (see comment with Node.copy, below).
func (n *Node) rawcopy() *Node {
copy := *n
return ©
}
// sepcopy returns a separate shallow copy of n, with the copy's
// Orig pointing to itself.
func (n *Node) sepcopy() *Node {
copy := *n
copy.Orig = ©
return ©
}
// copy returns shallow copy of n and adjusts the copy's Orig if
// necessary: In general, if n.Orig points to itself, the copy's
// Orig should point to itself as well. Otherwise, if n is modified,
// the copy's Orig node appears modified, too, and then doesn't
// represent the original node anymore.
// (This caused the wrong complit Op to be used when printing error
// messages; see issues #26855, #27765).
func (n *Node) copy() *Node {
copy := *n
if n.Orig == n {
copy.Orig = ©
}
return ©
}
// methcmp sorts methods by symbol.
type methcmp []*types.Field
func (x methcmp) Len() int { return len(x) }
func (x methcmp) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x methcmp) Less(i, j int) bool { return x[i].Sym.Less(x[j].Sym) }
func nodintconst(v int64) *Node {
u := new(Mpint)
u.SetInt64(v)
return nodlit(Val{u})
}
func nodnil() *Node {
return nodlit(Val{new(NilVal)})
}
func nodbool(b bool) *Node {
return nodlit(Val{b})
}
func nodstr(s string) *Node {
return nodlit(Val{s})
}
// treecopy recursively copies n, with the exception of
// ONAME, OLITERAL, OTYPE, and ONONAME leaves.
// If pos.IsKnown(), it sets the source position of newly
// allocated nodes to pos.
func treecopy(n *Node, pos src.XPos) *Node {
if n == nil {
return nil
}
switch n.Op {
default:
m := n.sepcopy()
m.Left = treecopy(n.Left, pos)
m.Right = treecopy(n.Right, pos)
m.List.Set(listtreecopy(n.List.Slice(), pos))
if pos.IsKnown() {
m.Pos = pos
}
if m.Name != nil && n.Op != ODCLFIELD {
Dump("treecopy", n)
Fatalf("treecopy Name")
}
return m
case OPACK:
// OPACK nodes are never valid in const value declarations,
// but allow them like any other declared symbol to avoid
// crashing (golang.org/issue/11361).
fallthrough
case ONAME, ONONAME, OLITERAL, OTYPE:
return n
}
}
// isNil reports whether n represents the universal untyped zero value "nil".
func (n *Node) isNil() bool {
// Check n.Orig because constant propagation may produce typed nil constants,
// which don't exist in the Go spec.
return Isconst(n.Orig, CTNIL)
}
func isptrto(t *types.Type, et types.EType) bool {
if t == nil {
return false
}
if !t.IsPtr() {
return false
}
t = t.Elem()
if t == nil {
return false
}
if t.Etype != et {
return false
}
return true
}
func (n *Node) isBlank() bool {
if n == nil {
return false
}
return n.Sym.IsBlank()
}
// methtype returns the underlying type, if any,
// that owns methods with receiver parameter t.
// The result is either a named type or an anonymous struct.
func methtype(t *types.Type) *types.Type {
if t == nil {
return nil
}
// Strip away pointer if it's there.
if t.IsPtr() {
if t.Sym != nil {
return nil
}
t = t.Elem()
if t == nil {
return nil
}
}
// Must be a named type or anonymous struct.
if t.Sym == nil && !t.IsStruct() {
return nil
}
// Check types.
if issimple[t.Etype] {
return t
}
switch t.Etype {
case TARRAY, TCHAN, TFUNC, TMAP, TSLICE, TSTRING, TSTRUCT:
return t
}
return nil
}
// Is type src assignment compatible to type dst?
// If so, return op code to use in conversion.
// If not, return 0.
func assignop(src *types.Type, dst *types.Type, why *string) Op {
if why != nil {
*why = ""
}
if src == dst {
return OCONVNOP
}
if src == nil || dst == nil || src.Etype == TFORW || dst.Etype == TFORW || src.Orig == nil || dst.Orig == nil {
return 0
}
// 1. src type is identical to dst.
if types.Identical(src, dst) {
return OCONVNOP
}
// 2. src and dst have identical underlying types
// and either src or dst is not a named type or
// both are empty interface types.
// For assignable but different non-empty interface types,
// we want to recompute the itab. Recomputing the itab ensures
// that itabs are unique (thus an interface with a compile-time
// type I has an itab with interface type I).
if types.Identical(src.Orig, dst.Orig) {
if src.IsEmptyInterface() {
// Conversion between two empty interfaces
// requires no code.
return OCONVNOP
}
if (src.Sym == nil || dst.Sym == nil) && !src.IsInterface() {
// Conversion between two types, at least one unnamed,
// needs no conversion. The exception is nonempty interfaces
// which need to have their itab updated.
return OCONVNOP
}
}
// 3. dst is an interface type and src implements dst.
if dst.IsInterface() && src.Etype != TNIL {
var missing, have *types.Field
var ptr int
if implements(src, dst, &missing, &have, &ptr) {
return OCONVIFACE
}
// we'll have complained about this method anyway, suppress spurious messages.
if have != nil && have.Sym == missing.Sym && (have.Type.Broke() || missing.Type.Broke()) {
return OCONVIFACE
}
if why != nil {
if isptrto(src, TINTER) {
*why = fmt.Sprintf(":\n\t%v is pointer to interface, not interface", src)
} else if have != nil && have.Sym == missing.Sym && have.Nointerface() {
*why = fmt.Sprintf(":\n\t%v does not implement %v (%v method is marked 'nointerface')", src, dst, missing.Sym)
} else if have != nil && have.Sym == missing.Sym {
*why = fmt.Sprintf(":\n\t%v does not implement %v (wrong type for %v method)\n"+
"\t\thave %v%0S\n\t\twant %v%0S", src, dst, missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type)
} else if ptr != 0 {
*why = fmt.Sprintf(":\n\t%v does not implement %v (%v method has pointer receiver)", src, dst, missing.Sym)
} else if have != nil {
*why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)\n"+
"\t\thave %v%0S\n\t\twant %v%0S", src, dst, missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type)
} else {
*why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)", src, dst, missing.Sym)
}
}
return 0
}
if isptrto(dst, TINTER) {
if why != nil {
*why = fmt.Sprintf(":\n\t%v is pointer to interface, not interface", dst)
}
return 0
}
if src.IsInterface() && dst.Etype != TBLANK {
var missing, have *types.Field
var ptr int
if why != nil && implements(dst, src, &missing, &have, &ptr) {
*why = ": need type assertion"
}
return 0
}
// 4. src is a bidirectional channel value, dst is a channel type,
// src and dst have identical element types, and
// either src or dst is not a named type.
if src.IsChan() && src.ChanDir() == types.Cboth && dst.IsChan() {
if types.Identical(src.Elem(), dst.Elem()) && (src.Sym == nil || dst.Sym == nil) {
return OCONVNOP
}
}
// 5. src is the predeclared identifier nil and dst is a nillable type.
if src.Etype == TNIL {
switch dst.Etype {
case TPTR,
TFUNC,
TMAP,
TCHAN,
TINTER,
TSLICE:
return OCONVNOP
}
}
// 6. rule about untyped constants - already converted by defaultlit.
// 7. Any typed value can be assigned to the blank identifier.
if dst.Etype == TBLANK {
return OCONVNOP
}
return 0
}
// Can we convert a value of type src to a value of type dst?
// If so, return op code to use in conversion (maybe OCONVNOP).
// If not, return 0.
func convertop(src *types.Type, dst *types.Type, why *string) Op {
if why != nil {
*why = ""
}
if src == dst {
return OCONVNOP
}
if src == nil || dst == nil {
return 0
}
// Conversions from regular to go:notinheap are not allowed
// (unless it's unsafe.Pointer). These are runtime-specific
// rules.
// (a) Disallow (*T) to (*U) where T is go:notinheap but U isn't.
if src.IsPtr() && dst.IsPtr() && dst.Elem().NotInHeap() && !src.Elem().NotInHeap() {
if why != nil {
*why = fmt.Sprintf(":\n\t%v is go:notinheap, but %v is not", dst.Elem(), src.Elem())
}
return 0
}
// (b) Disallow string to []T where T is go:notinheap.
if src.IsString() && dst.IsSlice() && dst.Elem().NotInHeap() && (dst.Elem().Etype == types.Bytetype.Etype || dst.Elem().Etype == types.Runetype.Etype) {
if why != nil {
*why = fmt.Sprintf(":\n\t%v is go:notinheap", dst.Elem())
}
return 0
}
// 1. src can be assigned to dst.
op := assignop(src, dst, why)
if op != 0 {
return op
}
// The rules for interfaces are no different in conversions
// than assignments. If interfaces are involved, stop now
// with the good message from assignop.
// Otherwise clear the error.
if src.IsInterface() || dst.IsInterface() {
return 0
}
if why != nil {
*why = ""
}
// 2. Ignoring struct tags, src and dst have identical underlying types.
if types.IdenticalIgnoreTags(src.Orig, dst.Orig) {
return OCONVNOP
}
// 3. src and dst are unnamed pointer types and, ignoring struct tags,
// their base types have identical underlying types.
if src.IsPtr() && dst.IsPtr() && src.Sym == nil && dst.Sym == nil {
if types.IdenticalIgnoreTags(src.Elem().Orig, dst.Elem().Orig) {
return OCONVNOP
}
}
// 4. src and dst are both integer or floating point types.
if (src.IsInteger() || src.IsFloat()) && (dst.IsInteger() || dst.IsFloat()) {
if simtype[src.Etype] == simtype[dst.Etype] {
return OCONVNOP
}
return OCONV
}
// 5. src and dst are both complex types.
if src.IsComplex() && dst.IsComplex() {
if simtype[src.Etype] == simtype[dst.Etype] {
return OCONVNOP
}
return OCONV
}
// 6. src is an integer or has type []byte or []rune
// and dst is a string type.
if src.IsInteger() && dst.IsString() {
return ORUNESTR
}
if src.IsSlice() && dst.IsString() {
if src.Elem().Etype == types.Bytetype.Etype {
return OBYTES2STR
}
if src.Elem().Etype == types.Runetype.Etype {
return ORUNES2STR
}
}
// 7. src is a string and dst is []byte or []rune.
// String to slice.
if src.IsString() && dst.IsSlice() {
if dst.Elem().Etype == types.Bytetype.Etype {
return OSTR2BYTES
}
if dst.Elem().Etype == types.Runetype.Etype {
return OSTR2RUNES
}
}
// 8. src is a pointer or uintptr and dst is unsafe.Pointer.
if (src.IsPtr() || src.Etype == TUINTPTR) && dst.Etype == TUNSAFEPTR {
return OCONVNOP
}
// 9. src is unsafe.Pointer and dst is a pointer or uintptr.
if src.Etype == TUNSAFEPTR && (dst.IsPtr() || dst.Etype == TUINTPTR) {
return OCONVNOP
}
// src is map and dst is a pointer to corresponding hmap.
// This rule is needed for the implementation detail that
// go gc maps are implemented as a pointer to a hmap struct.
if src.Etype == TMAP && dst.IsPtr() &&
src.MapType().Hmap == dst.Elem() {
return OCONVNOP
}
return 0
}
func assignconv(n *Node, t *types.Type, context string) *Node {
return assignconvfn(n, t, func() string { return context })
}
// Convert node n for assignment to type t.
func assignconvfn(n *Node, t *types.Type, context func() string) *Node {
if n == nil || n.Type == nil || n.Type.Broke() {
return n
}
if t.Etype == TBLANK && n.Type.Etype == TNIL {
yyerror("use of untyped nil")
}
n = convlit1(n, t, false, context)
if n.Type == nil {
return n
}
if t.Etype == TBLANK {
return n
}
// Convert ideal bool from comparison to plain bool
// if the next step is non-bool (like interface{}).
if n.Type == types.Idealbool && !t.IsBoolean() {
if n.Op == ONAME || n.Op == OLITERAL {
r := nod(OCONVNOP, n, nil)
r.Type = types.Types[TBOOL]
r.SetTypecheck(1)
r.SetImplicit(true)
n = r
}
}
if types.Identical(n.Type, t) {
return n
}
var why string
op := assignop(n.Type, t, &why)
if op == 0 {
yyerror("cannot use %L as type %v in %s%s", n, t, context(), why)
op = OCONV
}
r := nod(op, n, nil)
r.Type = t
r.SetTypecheck(1)
r.SetImplicit(true)
r.Orig = n.Orig
return r
}
// IsMethod reports whether n is a method.
// n must be a function or a method.
func (n *Node) IsMethod() bool {
return n.Type.Recv() != nil
}
// SliceBounds returns n's slice bounds: low, high, and max in expr[low:high:max].
// n must be a slice expression. max is nil if n is a simple slice expression.
func (n *Node) SliceBounds() (low, high, max *Node) {
if n.List.Len() == 0 {
return nil, nil, nil
}
switch n.Op {
case OSLICE, OSLICEARR, OSLICESTR:
s := n.List.Slice()
return s[0], s[1], nil
case OSLICE3, OSLICE3ARR:
s := n.List.Slice()
return s[0], s[1], s[2]
}
Fatalf("SliceBounds op %v: %v", n.Op, n)
return nil, nil, nil
}
// SetSliceBounds sets n's slice bounds, where n is a slice expression.
// n must be a slice expression. If max is non-nil, n must be a full slice expression.
func (n *Node) SetSliceBounds(low, high, max *Node) {
switch n.Op {
case OSLICE, OSLICEARR, OSLICESTR:
if max != nil {
Fatalf("SetSliceBounds %v given three bounds", n.Op)
}
s := n.List.Slice()
if s == nil {
if low == nil && high == nil {
return
}
n.List.Set2(low, high)
return
}
s[0] = low
s[1] = high
return
case OSLICE3, OSLICE3ARR:
s := n.List.Slice()
if s == nil {
if low == nil && high == nil && max == nil {
return
}
n.List.Set3(low, high, max)
return
}
s[0] = low
s[1] = high
s[2] = max
return
}
Fatalf("SetSliceBounds op %v: %v", n.Op, n)
}
// IsSlice3 reports whether o is a slice3 op (OSLICE3, OSLICE3ARR).
// o must be a slicing op.
func (o Op) IsSlice3() bool {
switch o {
case OSLICE, OSLICEARR, OSLICESTR:
return false
case OSLICE3, OSLICE3ARR:
return true
}
Fatalf("IsSlice3 op %v", o)
return false
}
// labeledControl returns the control flow Node (for, switch, select)
// associated with the label n, if any.
func (n *Node) labeledControl() *Node {
if n.Op != OLABEL {
Fatalf("labeledControl %v", n.Op)
}
ctl := n.Name.Defn
if ctl == nil {
return nil
}
switch ctl.Op {
case OFOR, OFORUNTIL, OSWITCH, OSELECT:
return ctl
}
return nil
}
func syslook(name string) *Node {
s := Runtimepkg.Lookup(name)
if s == nil || s.Def == nil {
Fatalf("syslook: can't find runtime.%s", name)
}
return asNode(s.Def)
}
// typehash computes a hash value for type t to use in type switch statements.
func typehash(t *types.Type) uint32 {
p := t.LongString()
// Using MD5 is overkill, but reduces accidental collisions.
h := md5.Sum([]byte(p))
return binary.LittleEndian.Uint32(h[:4])
}
// updateHasCall checks whether expression n contains any function
// calls and sets the n.HasCall flag if so.
func updateHasCall(n *Node) {
if n == nil {
return
}
n.SetHasCall(calcHasCall(n))
}
func calcHasCall(n *Node) bool {
if n.Ninit.Len() != 0 {
// TODO(mdempsky): This seems overly conservative.
return true
}
switch n.Op {
case OLITERAL, ONAME, OTYPE:
if n.HasCall() {
Fatalf("OLITERAL/ONAME/OTYPE should never have calls: %+v", n)
}
return false
case OCALL, OCALLFUNC, OCALLMETH, OCALLINTER:
return true
case OANDAND, OOROR:
// hard with instrumented code
if instrumenting {
return true
}
case OINDEX, OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR, OSLICESTR,
ODEREF, ODOTPTR, ODOTTYPE, ODIV, OMOD:
// These ops might panic, make sure they are done
// before we start marshaling args for a call. See issue 16760.
return true
// When using soft-float, these ops might be rewritten to function calls
// so we ensure they are evaluated first.
case OADD, OSUB, ONEG, OMUL:
if thearch.SoftFloat && (isFloat[n.Type.Etype] || isComplex[n.Type.Etype]) {
return true
}
case OLT, OEQ, ONE, OLE, OGE, OGT:
if thearch.SoftFloat && (isFloat[n.Left.Type.Etype] || isComplex[n.Left.Type.Etype]) {
return true
}
case OCONV:
if thearch.SoftFloat && ((isFloat[n.Type.Etype] || isComplex[n.Type.Etype]) || (isFloat[n.Left.Type.Etype] || isComplex[n.Left.Type.Etype])) {
return true
}
}