forked from valentina-s/GithubActionsTutorial-USRSE23
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_spectrogram.py
142 lines (110 loc) · 4.45 KB
/
create_spectrogram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import argparse
import logging
from os import path
from pathlib import Path
import matplotlib.pyplot as plt
from scipy.io import wavfile
def create_spec_name(wav_name, output_dir=None):
"""Creates appropriate path to the spectrogram from input .wav file and output directory.
Args:
`wav_name`: Path to the input .wav file.
`output_dir`: Path to the output directory.
Returns:
Path to the output spectrogram.
"""
spec_name = path.splitext(path.basename(wav_name))[0]
if output_dir is not None:
spec_name = path.join(path.normpath(output_dir), spec_name)
return f"{spec_name}.png"
def plot_psd(data, samplerate, nfft=256, noverlap=128):
"""Plots power spectral density spectrogram.
Args:
`data`: Array or sequence containing the data.
`samplerate`: The sampling frequency (samples per time unit).
`nfft`: The number of data points used in each block for the FFT. A power 2 is most efficient.
`noverlap`: The number of points of overlap between blocks.
"""
plt.specgram(data, Fs=samplerate, NFFT=nfft, noverlap=noverlap)
plt.ylabel("Frequency [Hz]")
cbar = plt.colorbar()
cbar.set_label("DB")
def total_psd(data, samplerate, nfft=256, noverlap=128):
"""Computes total psd.
Args:
`data`: Array or sequence containing the data.
`samplerate`: The sampling frequency (samples per time unit).
`nfft`: The number of data points used in each block for the FFT. A power 2 is most efficient.
`noverlap`: The number of points of overlap between blocks.
"""
spectrum = plt.specgram(data, Fs=samplerate, NFFT=nfft, noverlap=noverlap)
print(spectrum.sum().sum())
return(spectrum.sum().sum())
def save_spectrogram(input_wav, plot_path=None, nfft=256):
"""Saves power spectral density spectrogram to file.
Args:
`input_wav`: Path to the input .wav file.
`plot_path`: Path to the output spectrogram file. Default is `input_wav` with .png extension.
`nfft`: The number of data points used in each block for the FFT. A power 2 is most efficient.
Returns:
Path to the spectrogram.
"""
samplerate, data = wavfile.read(input_wav)
noverlap = nfft // 2 if nfft <= 128 else 128
title = path.splitext(path.basename(input_wav))[0]
plt.title(title)
if len(data.shape) == 1:
plot_psd(data, samplerate, nfft, noverlap)
else:
# plt.subplot(211)
plot_psd(data[:, 0], samplerate, nfft, noverlap)
# uncomment to show 2 channels
# title = f"{title}\nChannel 0 above, Channel 1 below"
# plt.title(title)
# plt.subplot(212)
# plot_psd(data[:, 1], samplerate, nfft, noverlap)
plt.xlabel("Time [s]")
if plot_path is None:
plot_path = f"{path.splitext(input_wav)[0]}.png"
else:
Path(path.dirname(plot_path)).mkdir(parents=True, exist_ok=True)
plt.savefig(plot_path)
plt.cla()
plt.close("all")
logging.info("Finished " + input_wav)
return plot_path
def total_spectrum(input_wav, plot_path=None, nfft=256):
"""Scores power spectral density spectrogram to file.
Args:
`input_wav`: Path to the input .wav file.
`plot_path`: Path to the output spectrogram file. Default is `input_wav` with .png extension.
`nfft`: The number of data points used in each block for the FFT. A power 2 is most efficient.
Returns:
Path to the spectrogram.
"""
samplerate, data = wavfile.read(input_wav)
noverlap = nfft // 2 if nfft <= 128 else 128
title = path.splitext(path.basename(input_wav))[0]
if len(data.shape) == 1:
return(total_psd(data, samplerate, nfft, noverlap))
else:
# plt.subplot(211)
return(total_psd(data[:, 0], samplerate, nfft, noverlap))
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Plots power spectral density spectrogram."
)
parser.add_argument("input", help="Path to the input .wav file.")
parser.add_argument(
"-o",
"--output",
help="Path to the output spectrogram file. Default is `input` with .png extension.",
)
parser.add_argument(
"-n",
"--nfft",
type=int,
help="The number of data points used in each block for the FFT. A power 2 is most efficient. Default is 256.",
default=256,
)
args = parser.parse_args()
save_spectrogram(args.input, args.output, args.nfft)