-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathpts2nerf.py
266 lines (200 loc) · 10.6 KB
/
pts2nerf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import numpy as np
import os
from os.path import join, exists
import matplotlib.pyplot as plt
import torch
from torch.utils.data import DataLoader
from datetime import datetime
from nerf_helpers import *
from itertools import chain
from tqdm import tqdm
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from utils import *
from dataset.dataset import NeRFShapeNetDataset
from models.encoder import Encoder
from models.nerf import NeRF
from models.resnet import resnet18
from hypnettorch.hnets.chunked_mlp_hnet import ChunkedHMLP
#Needed for workers for dataloader
from torch.multiprocessing import Pool, Process, set_start_method
set_start_method('spawn', force=True)
import argparse
if __name__ == '__main__':
dirname = os.path.dirname(__file__)
parser = argparse.ArgumentParser(description='Start training')
parser.add_argument('config_path', type=str,
help='Relative config path')
args = parser.parse_args()
config = None
with open(args.config_path) as f:
config = json.load(f)
assert config is not None
print(config)
set_seed(config['seed'])
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Device: ', device)
torch.set_default_tensor_type('torch.cuda.FloatTensor')
dataset = NeRFShapeNetDataset(root_dir=config['data_dir'], classes=config['classes'])
dataloader = DataLoader(dataset, batch_size=config['batch_size'],
shuffle=config['shuffle'],
num_workers=8, drop_last=True,
pin_memory=True, generator=torch.Generator(device='cuda'))
embed_fn, config['model']['TN']['input_ch_embed'] = get_embedder(config['model']['TN']['multires'], config['model']['TN']['i_embed'])
embeddirs_fn = None
config['model']['TN']['input_ch_views_embed'] = 0
if config['model']['TN']['use_viewdirs']:
embeddirs_fn, config['model']['TN']['input_ch_views_embed']= get_embedder(config['model']['TN']['multires_views'], config['model']['TN']['i_embed'])
# Create a NeRF network
nerf = NeRF(config['model']['TN']['D'],config['model']['TN']['W'],
config['model']['TN']['input_ch_embed'],
config['model']['TN']['input_ch_views_embed'],
config['model']['TN']['use_viewdirs']).to(device)
#Hypernetwork
hnet = ChunkedHMLP(nerf.param_shapes, uncond_in_size=config['z_size'], cond_in_size=0,
layers=config['model']['HN']['arch'], chunk_size=config['model']['HN']['chunk_size'], cond_chunk_embs=False, use_bias=config['model']['HN']['use_bias']).to(device)
print(hnet.param_shapes)
#Create encoder: either Resnet or classic
if config['resnet']==True:
encoder = resnet18(num_classes=config['z_size']).to(device)
else:
encoder = Encoder(config).to(device)
#RAdam because it might help with not collapsing to white background
optimizer = torch.optim.RAdam(chain(encoder.parameters(), hnet.internal_params), **config['optimizer']['E_HN']['hyperparams'])
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=config['lr_decay'])
loss_fn = torch.nn.MSELoss()
results_dir = config['results_dir']
os.makedirs(join(dirname,results_dir), exist_ok=True)
with open(join(results_dir, "config.json"), "w") as file:
json.dump(config, file, indent=4)
try:
losses_r = np.load(join(results_dir, f'losses_r.npy')).tolist()
print("Loaded reconstruction losses")
losses_kld = np.load(join(results_dir, f'losses_kld.npy')).tolist()
print("Loaded KLD losses")
losses_total = np.load(join(results_dir, f'losses_total.npy')).tolist()
print("Loaded total losses")
except:
print("Haven't found previous loss data. We are assuming that this is a new experiment.")
losses_r = []
losses_kld = []
losses_total = []
starting_epoch = len(losses_total)
print("starting epoch:", starting_epoch)
if(starting_epoch>0):
print("Loading weights since previous losses were found")
try:
hnet.load_state_dict(torch.load(join(results_dir, f"model_hn_{starting_epoch-1}.pt")))
print("Loaded HNet")
encoder.load_state_dict(torch.load(join(results_dir, f"model_e_{starting_epoch-1}.pt")))
print("Loaded Encoder")
scheduler.load_state_dict(torch.load(join(results_dir, f"lr_{starting_epoch-1}.pt")))
print("Loaded Scheduler")
except:
print("Haven't found all previous models.")
hnet.train()
encoder.train()
os.makedirs(join(results_dir, 'samples'), exist_ok=True)
for epoch in range(starting_epoch, starting_epoch+config['max_epochs'] + 1):
start_epoch_time = datetime.now()
total_loss = 0.0
total_loss_r = 0.0
total_loss_kld = 0.0
for i, (entry, cat, obj_path) in enumerate(dataloader):
x = []
y = []
if config['resnet']:
nerf_Ws, mu, logvar = get_nerf_resnet(entry, encoder, hnet)
else:
nerf_Ws, mu, logvar = get_nerf(entry, encoder, hnet)
#For batch size == 1 hnet doesn't return batch dimension...
if config['batch_size'] == 1:
nerf_Ws = [nerf_Ws]
for j, target_w in enumerate(nerf_Ws):
render_kwargs_train = get_render_kwargs(config, nerf, target_w, embed_fn, embeddirs_fn)
for p in range(config["poses"]):
img_i = np.random.choice(len(entry['images'][j]), 1)
target = entry['images'][j][img_i][0].to(device)
target = torch.Tensor(target.float())
pose = entry['cam_poses'][j][img_i, :3,:4][0].to(device)
H = entry["images"][j].shape[1]
W = entry["images"][j].shape[2]
focal = .5 * W / np.tan(.5 * 0.6911112070083618)
K = np.array([
[focal, 0, 0.5*W],
[0, focal, 0.5*H],
[0, 0, 1]
])
#Calculate rays from camera origin
rays_o, rays_d = get_rays(H, W, K, torch.Tensor(pose.float()))
#Create coordinates array (for ray selection)
coords = torch.stack(torch.meshgrid(torch.linspace(0, H-1, H), torch.linspace(0, W-1, W)), -1) # (H, W, 2)
#To 1D
coords = torch.reshape(coords, [-1,2]) # (H * W, 2)
#Select rays based on random coord selection
select_inds = np.random.choice(coords.shape[0], size=[config['model']['TN']['N_rand'],], replace=False) # (N_rand,)
select_coords = coords[select_inds].long() # (N_rand, 2)
rays_o = rays_o[select_coords[:, 0], select_coords[:, 1]] # (N_rand, 3)
rays_d = rays_d[select_coords[:, 0], select_coords[:, 1]] # (N_rand, 3)
batch_rays = torch.stack([rays_o, rays_d], 0)
target_s = target[select_coords[:, 0], select_coords[:, 1]] # (N_rand, 3)
img_r, _, _, _ = render(H, W, K, chunk=config['model']['TN']['netchunk'], rays=batch_rays.to(device),
verbose=True, retraw=True,
**render_kwargs_train)
x.append(target_s)
y.append(img_r)
optimizer.zero_grad()
x = torch.stack(x)
y = torch.stack(y)
loss_r = loss_fn(y, x)
loss_kld = 0.5 * (torch.exp(logvar) + torch.pow(mu, 2) - 1 - logvar).sum()
loss = loss_r + loss_kld
loss.backward()
optimizer.step()
total_loss_r += loss_r.item()
total_loss += loss.item()
total_loss_kld += loss_kld.item()
losses_r.append(total_loss_r)
losses_kld.append(total_loss_kld)
losses_total.append(total_loss)
scheduler.step()
#Log information, save models etc.
if epoch % config['i_log'] == 0:
print(f"Epoch {epoch}: took {round((datetime.now() - start_epoch_time).total_seconds(), 3)} seconds")
print(f"Total loss: {total_loss} Loss R: {total_loss_r} Loss KLD: {total_loss_kld}")
#Compare current reconstruction
if epoch % config['i_sample'] == 0 or epoch == 0:
with torch.no_grad():
render_kwargs_test = {
k: render_kwargs_train[k] for k in render_kwargs_train}
render_kwargs_test['perturb'] = False
render_kwargs_test['raw_noise_std'] = 0.
img, _, _, _ = render(H,W,K, chunk=config['model']['TN']['netchunk'], c2w=pose,
verbose=True, retraw=True,
**render_kwargs_test)
f, axarr = plt.subplots(1,2)
axarr[0].imshow(img.detach().cpu())
axarr[1].imshow(target.detach().cpu())
f.savefig(join(results_dir, 'samples', f"epoch_{epoch}.png"))
plt.close(f)
if epoch % config['i_save']==0:
torch.save(hnet.state_dict(), join(results_dir, f"model_hn_{epoch}.pt"))
torch.save(encoder.state_dict(), join(results_dir, f"model_e_{epoch}.pt"))
torch.save(scheduler.state_dict(), join(results_dir, f"lr_{epoch}.pt"))
#torch.save(optimizer.state_dict(), join(results_dir, f"opt_{epoch}.pt"))
np.save(join(results_dir, 'losses_r.npy'), np.array(losses_r))
np.save(join(results_dir, 'losses_kld.npy'), np.array(losses_kld))
np.save(join(results_dir, 'losses_total.npy'), np.array(losses_total))
plt.plot(losses_r)
plt.savefig(os.path.join(results_dir, f'loss_r_plot.png'))
plt.close()
plt.loglog(losses_r)
plt.savefig(os.path.join(results_dir, f'loss_r_plot_log.png'))
plt.close()
plt.plot(losses_kld)
plt.savefig(os.path.join(results_dir, f'loss_kld_plot.png'))
plt.close()
plt.plot(losses_total)
plt.savefig(os.path.join(results_dir, f'loss_total_plot.png'))
plt.close()