-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTS_DL_architectures.py
55 lines (41 loc) · 2.05 KB
/
TS_DL_architectures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from keras import layers, models, optimizers
class TS_CNN():
"""
"""
def __init__(self):
print ('building CNN...')
def create_model(self, X_shape, nr_classes, learn_rate, dropout=0, last_layer='gl_avg_pooling'):
# Common CNN part
X = layers.Input(X_shape)
conv1 = layers.Conv1D(filters=128, kernel_size=7, strides=1, padding='same', activation='relu')(X)
conv1 = layers.normalization.BatchNormalization()(conv1)
conv1 = layers.MaxPooling1D(pool_size=2, strides=2)(conv1)
conv1 = layers.Dropout(dropout)(conv1)
conv2 = layers.Conv1D(filters=256, kernel_size=5, strides=1, padding='same', activation='relu')(conv1)
conv2 = layers.normalization.BatchNormalization()(conv2)
conv2 = layers.MaxPooling1D(pool_size=2, strides=2)(conv2)
conv2 = layers.Dropout(dropout)(conv2)
conv3 = layers.Conv1D(filters=512, kernel_size=3, strides=1, padding='same', activation='relu')(conv2)
conv3 = layers.normalization.BatchNormalization()(conv3)
conv3 = layers.MaxPooling1D(pool_size=2, strides=2)(conv3)
conv3 = layers.Dropout(dropout)(conv3)
# Global average pooling
if last_layer == 'gl_avg_pooling':
full = layers.pooling.GlobalAveragePooling1D()(conv3)
# Fully Connected Layer
elif last_layer == 'fully_connected':
full = layers.Flatten()(conv3)
full = layers.Dense(units=128, activation='relu')(full)
full = layers.Dropout(dropout)(full)
# Long Short Term Memory layer
elif last_layer == 'LSTM':
lstm1 = layers.LSTM(units=128)(conv3)
full = layers.Dropout(dropout)(lstm1)
Y_prob = layers.Dense(units=nr_classes, activation='softmax')(full)
model = models.Model(inputs=X, outputs=Y_prob)
# Define optimizer and compile
adam = optimizers.Adam(lr=learn_rate)
model.compile(optimizer=adam,
loss='categorical_crossentropy',
metrics=['acc'])
return model