-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathremap_particle_IDs.py
48 lines (33 loc) · 1.52 KB
/
remap_particle_IDs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from itertools import product
import numpy as np
def original_position(Nres: int, particle_ID: int):
particle_k = particle_ID % Nres
particle_j = ((particle_ID - particle_k) // Nres) % Nres
particle_i = ((particle_ID - particle_k) // Nres - particle_j) // Nres
return np.array([particle_i, particle_j, particle_k])
def upscale_IDs(particle_ID: int, Nres_min: int, Nres_max: int):
assert Nres_max % Nres_min == 0
N = Nres_max // Nres_min
orig = original_position(Nres_min, particle_ID)
mult = orig * N
for shift in product(range(N), repeat=3):
variant = mult + np.array(shift)
yield ((variant[0] * Nres_max) + variant[1]) * Nres_max + variant[2]
def downscale_IDs(particle_ID: int, Nres_max: int, Nres_min: int):
assert Nres_max % Nres_min == 0
N = Nres_max // Nres_min
orig = original_position(Nres_max, particle_ID)
mult = np.floor_divide(orig, N)
return ((mult[0] * Nres_min) + mult[1]) * Nres_min + mult[2]
if __name__ == "__main__":
test_particle = np.array([1, 1, 0])
# maximum_test = np.array([127, 127, 127]) #this works, Nres - 1 is the maximum for (i,j,k)
Nres_1 = 128
Nres_2 = 256
test_particle_id = ((test_particle[0] * Nres_1) + test_particle[1]) * Nres_1 + test_particle[2]
print(test_particle_id)
particle_ID_1_converted = upscale_IDs(test_particle_id, Nres_1, Nres_2)
for id in particle_ID_1_converted:
reverse = downscale_IDs(id, Nres_2, Nres_1)
print(id, reverse)
assert reverse == test_particle_id