-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
198 lines (159 loc) · 5.87 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
from collections import Counter
import numpy as np
from mirdata import initialize
from dataset import Dataset
def get_split_tracks(split_file):
"""
given a txt file with track names separated by \n,
return a list with all the files
"""
print(f"split file {split_file}")
with open(split_file, "r") as f:
tracks = f.read().splitlines()
return tracks
def custom_dataset_loader(path, dataset_name, folder="datasets"):
"""
loads a custom dataset
"""
print(f"Loading {dataset_name} through custom loader")
datasetdir = os.path.join(path, folder, dataset_name)
dataset = Dataset(
dataset_name = dataset_name,
data_home=os.path.join(datasetdir, "audio"),
annotations_home=os.path.join(datasetdir, "annotations")
)
return dataset
def multi_dataset_loader(data_home, dataset_names):
"""
load and concatenate multiple datasets into a single one
arguments
---
datasets : list[str]
list with datasets names (mirdata or custom)
return
---
tracks : dict{str: mirdata.Track}
dictionary with mirdata.Track information
"""
tracks = {}
augs = ["_24", "_34", "_64"]
if "beatles" in dataset_names:
dataset = initialize("beatles", version="default",
data_home=os.path.join(data_home, "beatles"))
tracks = tracks | dataset.load_tracks()
if "beatles_24" in dataset_names:
dataset = custom_dataset_loader(
path = data_home,
folder = "beatles_augmented",
dataset_name = "24"
)
tracks = tracks | dataset.load_tracks()
if "beatles_34" in dataset_names:
dataset = custom_dataset_loader(
path = data_home,
folder = "beatles_augmented",
dataset_name = "34"
)
tracks = tracks | dataset.load_tracks()
if "rwc_jazz" in dataset_names:
dataset = initialize("rwc_jazz", version="default",
data_home=os.path.join(data_home, "rwc_jazz"))
tracks = tracks | dataset.load_tracks()
if "rwc_jazz_24" in dataset_names:
dataset = custom_dataset_loader(
path = data_home,
folder = "rwc_jazz_24_augmented",
dataset_name = "24"
)
tracks = tracks | dataset.load_tracks()
if "rwc_jazz_34" in dataset_names:
dataset = custom_dataset_loader(
path = data_home,
folder = "rwc_jazz_34_augmented",
dataset_name = "34"
)
tracks = tracks | dataset.load_tracks()
if "rwc_classical" in dataset_names:
dataset = initialize("rwc_classical", version="default",
data_home=os.path.join(data_home, "rwc_classical"))
tracks = tracks | dataset.load_tracks()
if "rwc_classical_24" in dataset_names:
dataset = custom_dataset_loader(
path = data_home,
folder = "rwc_classical_34_augmented",
dataset_name = "24"
)
tracks = tracks | dataset.load_tracks()
if "rwc_classical_34" in dataset_names:
dataset = custom_dataset_loader(
path = data_home,
folder = "rwc_classical_34_augmented",
dataset_name = "34"
)
tracks = tracks | dataset.load_tracks()
if "rwc_pop" in dataset_names:
dataset = initialize("rwc_pop", version="default",
data_home=os.path.join(data_home, "rwc_pop"))
tracks = tracks | dataset.load_tracks()
if "gtzan" in dataset_names:
dataset = initialize("gtzan_genre", version="default",
data_home=os.path.join(data_home, "gtzan_genre"))
tracks = tracks | dataset.load_tracks()
if "gtzan_24" in dataset_names:
dataset = custom_dataset_loader(
path = data_home,
folder = "gtzan_genre_augmented",
dataset_name = "24"
)
tracks = tracks | dataset.load_tracks()
if "gtzan_34" in dataset_names:
dataset = custom_dataset_loader(
path = data_home,
folder = "gtzan_genre_augmented",
dataset_name = "34"
)
tracks = tracks | dataset.load_tracks()
if "gtzan_64" in dataset_names:
dataset = custom_dataset_loader(
path = data_home,
folder = "gtzan_genre_augmented",
dataset_name = "64"
)
tracks = tracks | dataset.load_tracks()
if "gtzan_74" in dataset_names:
dataset = custom_dataset_loader(
path = data_home,
folder = "gtzan_genre_augmented",
dataset_name = "74"
)
tracks = tracks | dataset.load_tracks()
return tracks
def dataset_meter(dataset):
"""
return a dictionary with the dataset tracks and their respective meter (time
signature) based on beat annotations.
this method will skip tracks with no beat information.
this method also skip tracks with no beat **position** information, i.e. the
number of the beat inside the bar.
Parameters
---
dataset: mirdata.Dataset
an instance of a mirdata dataset or a custom dataset that implements the
Dataset class
Return
---
dataset_meter: dict
dictionary of type {track_id: meter}
"""
dataset_meter = {}
for t in dataset.track_ids:
tid = dataset.track(t)
try:
beat_positions = tid.beats.positions
c = Counter(beat_positions[np.where(np.diff(beat_positions) < 0)])
dataset_meter[t] = int(c.most_common()[0][0])
except (AttributeError, ValueError):
print(f"track {t} has no beat information.skipping")
continue
return dataset_meter