-
Notifications
You must be signed in to change notification settings - Fork 94
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add reduction for arrays. #831
Conversation
I want to ask whether we make Array class related to the device (not header only) or not? (before release 1.4)
|
Generally, I like to think of gko::Array as a the only vocabulary type that Ginkgo exposes. Something that can be used universally for interoperability with other libraries and user data. Now we have a few additions, namely value-converting |
I agree with not overloading Array, but I think that can severely restrict functionality. For example, the only way to store integer types right now is with arrays. And there are many situations where you need reductions for these integer arrays. |
In that case, wouldn't a free function |
Yes, I guess we could add a free function instead of member functions. I am not sure where to add them though. I think there are multiple use cases for reduction over integer arrays. To calculate the total number of non-zeros in a matrix, if you have the number of nonzeros per row to give a very specific example :) But in general, I believe this is something useful not only from a user's perspective but also for us to write our algorithms more easily in our core. |
In core algorithms, we usually need prefix sums, not plain reductions. And these computations are mostly necessary in the context of a matrix conversion, which we represent with a high-level interface already. If we want to use this operation inside I think we need to find a balance of how much we want to enable to write their own complex algorithms, and how generic we want to make that. Sum reductions are for example not the only important operation, think of (arg)min/max for building ELL. |
Codecov Report
@@ Coverage Diff @@
## develop #831 +/- ##
===========================================
- Coverage 94.73% 94.72% -0.01%
===========================================
Files 431 434 +3
Lines 35669 35706 +37
===========================================
+ Hits 33790 33822 +32
- Misses 1879 1884 +5
Continue to review full report at Codecov.
|
Kudos, SonarCloud Quality Gate passed! |
41e213b
to
5352fc3
Compare
6d581d8
to
7a3c25a
Compare
Kudos, SonarCloud Quality Gate passed! |
7a3c25a
to
b4eb241
Compare
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
need another name for reduce2 and how many changes will be related to #833
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Mostly minor comments, but some of them I would like to have resolved before approving.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM!
7e6832b
to
57cf6fb
Compare
Co-authored-by: Yu-Hsiang Tsai <yhmtsai@gmail.com> Co-authored-by: Thomas Grützmacher <thomas.gruetzmacher@kit.edu>
Co-authored-by: Terry Cojean <terry.cojean@kit.edu>
+ TODO: Investigate array initializer list constructor that fails for size_type.
57cf6fb
to
4e9260f
Compare
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM in general.
but some nit on the test case
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Co-authored-by: Yu-Hsiang Tsai<yhmtsai@gmail.com>
be29664
to
69de7a4
Compare
Kudos, SonarCloud Quality Gate passed! |
Advertise release 1.5.0 and last changes + Add changelog, + Update third party libraries + A small fix to a CMake file See PR: #1195 The Ginkgo team is proud to announce the new Ginkgo minor release 1.5.0. This release brings many important new features such as: - MPI-based multi-node support for all matrix formats and most solvers; - full DPC++/SYCL support, - functionality and interface for GPU-resident sparse direct solvers, - an interface for wrapping solvers with scaling and reordering applied, - a new algebraic Multigrid solver/preconditioner, - improved mixed-precision support, - support for device matrix assembly, and much more. If you face an issue, please first check our [known issues page](https://github.com/ginkgo-project/ginkgo/wiki/Known-Issues) and the [open issues list](https://github.com/ginkgo-project/ginkgo/issues) and if you do not find a solution, feel free to [open a new issue](https://github.com/ginkgo-project/ginkgo/issues/new/choose) or ask a question using the [github discussions](https://github.com/ginkgo-project/ginkgo/discussions). Supported systems and requirements: + For all platforms, CMake 3.13+ + C++14 compliant compiler + Linux and macOS + GCC: 5.5+ + clang: 3.9+ + Intel compiler: 2018+ + Apple LLVM: 8.0+ + NVHPC: 22.7+ + Cray Compiler: 14.0.1+ + CUDA module: CUDA 9.2+ or NVHPC 22.7+ + HIP module: ROCm 4.0+ + DPC++ module: Intel OneAPI 2021.3 with oneMKL and oneDPL. Set the CXX compiler to `dpcpp`. + Windows + MinGW and Cygwin: GCC 5.5+ + Microsoft Visual Studio: VS 2019 + CUDA module: CUDA 9.2+, Microsoft Visual Studio + OpenMP module: MinGW or Cygwin. Algorithm and important feature additions: + Add MPI-based multi-node for all matrix formats and solvers (except GMRES and IDR). ([#676](#676), [#908](#908), [#909](#909), [#932](#932), [#951](#951), [#961](#961), [#971](#971), [#976](#976), [#985](#985), [#1007](#1007), [#1030](#1030), [#1054](#1054), [#1100](#1100), [#1148](#1148)) + Porting the remaining algorithms (preconditioners like ISAI, Jacobi, Multigrid, ParILU(T) and ParIC(T)) to DPC++/SYCL, update to SYCL 2020, and improve support and performance ([#896](#896), [#924](#924), [#928](#928), [#929](#929), [#933](#933), [#943](#943), [#960](#960), [#1057](#1057), [#1110](#1110), [#1142](#1142)) + Add a Sparse Direct interface supporting GPU-resident numerical LU factorization, symbolic Cholesky factorization, improved triangular solvers, and more ([#957](#957), [#1058](#1058), [#1072](#1072), [#1082](#1082)) + Add a ScaleReordered interface that can wrap solvers and automatically apply reorderings and scalings ([#1059](#1059)) + Add a Multigrid solver and improve the aggregation based PGM coarsening scheme ([#542](#542), [#913](#913), [#980](#980), [#982](#982), [#986](#986)) + Add infrastructure for unified, lambda-based, backend agnostic, kernels and utilize it for some simple kernels ([#833](#833), [#910](#910), [#926](#926)) + Merge different CUDA, HIP, DPC++ and OpenMP tests under a common interface ([#904](#904), [#973](#973), [#1044](#1044), [#1117](#1117)) + Add a device_matrix_data type for device-side matrix assembly ([#886](#886), [#963](#963), [#965](#965)) + Add support for mixed real/complex BLAS operations ([#864](#864)) + Add a FFT LinOp for all but DPC++/SYCL ([#701](#701)) + Add FBCSR support for NVIDIA and AMD GPUs and CPUs with OpenMP ([#775](#775)) + Add CSR scaling ([#848](#848)) + Add array::const_view and equivalent to create constant matrices from non-const data ([#890](#890)) + Add a RowGatherer LinOp supporting mixed precision to gather dense matrix rows ([#901](#901)) + Add mixed precision SparsityCsr SpMV support ([#970](#970)) + Allow creating CSR submatrix including from (possibly discontinuous) index sets ([#885](#885), [#964](#964)) + Add a scaled identity addition (M <- aI + bM) feature interface and impls for Csr and Dense ([#942](#942)) Deprecations and important changes: + Deprecate AmgxPgm in favor of the new Pgm name. ([#1149](#1149)). + Deprecate specialized residual norm classes in favor of a common `ResidualNorm` class ([#1101](#1101)) + Deprecate CamelCase non-polymorphic types in favor of snake_case versions (like array, machine_topology, uninitialized_array, index_set) ([#1031](#1031), [#1052](#1052)) + Bug fix: restrict gko::share to rvalue references (*possible interface break*) ([#1020](#1020)) + Bug fix: when using cuSPARSE's triangular solvers, specifying the factory parameter `num_rhs` is now required when solving for more than one right-hand side, otherwise an exception is thrown ([#1184](#1184)). + Drop official support for old CUDA < 9.2 ([#887](#887)) Improved performance additions: + Reuse tmp storage in reductions in solvers and add a mutable workspace to all solvers ([#1013](#1013), [#1028](#1028)) + Add HIP unsafe atomic option for AMD ([#1091](#1091)) + Prefer vendor implementations for Dense dot, conj_dot and norm2 when available ([#967](#967)). + Tuned OpenMP SellP, COO, and ELL SpMV kernels for a small number of RHS ([#809](#809)) Fixes: + Fix various compilation warnings ([#1076](#1076), [#1183](#1183), [#1189](#1189)) + Fix issues with hwloc-related tests ([#1074](#1074)) + Fix include headers for GCC 12 ([#1071](#1071)) + Fix for simple-solver-logging example ([#1066](#1066)) + Fix for potential memory leak in Logger ([#1056](#1056)) + Fix logging of mixin classes ([#1037](#1037)) + Improve value semantics for LinOp types, like moved-from state in cross-executor copy/clones ([#753](#753)) + Fix some matrix SpMV and conversion corner cases ([#905](#905), [#978](#978)) + Fix uninitialized data ([#958](#958)) + Fix CUDA version requirement for cusparseSpSM ([#953](#953)) + Fix several issues within bash-script ([#1016](#1016)) + Fixes for `NVHPC` compiler support ([#1194](#1194)) Other additions: + Simplify and properly name GMRES kernels ([#861](#861)) + Improve pkg-config support for non-CMake libraries ([#923](#923), [#1109](#1109)) + Improve gdb pretty printer ([#987](#987), [#1114](#1114)) + Add a logger highlighting inefficient allocation and copy patterns ([#1035](#1035)) + Improved and optimized test random matrix generation ([#954](#954), [#1032](#1032)) + Better CSR strategy defaults ([#969](#969)) + Add `move_from` to `PolymorphicObject` ([#997](#997)) + Remove unnecessary device_guard usage ([#956](#956)) + Improvements to the generic accessor for mixed-precision ([#727](#727)) + Add a naive lower triangular solver implementation for CUDA ([#764](#764)) + Add support for int64 indices from CUDA 11 onward with SpMV and SpGEMM ([#897](#897)) + Add a L1 norm implementation ([#900](#900)) + Add reduce_add for arrays ([#831](#831)) + Add utility to simplify Dense View creation from an existing Dense vector ([#1136](#1136)). + Add a custom transpose implementation for Fbcsr and Csr transpose for unsupported vendor types ([#1123](#1123)) + Make IDR random initilization deterministic ([#1116](#1116)) + Move the algorithm choice for triangular solvers from Csr::strategy_type to a factory parameter ([#1088](#1088)) + Update CUDA archCoresPerSM ([#1175](#1116)) + Add kernels for Csr sparsity pattern lookup ([#994](#994)) + Differentiate between structural and numerical zeros in Ell/Sellp ([#1027](#1027)) + Add a binary IO format for matrix data ([#984](#984)) + Add a tuple zip_iterator implementation ([#966](#966)) + Simplify kernel stubs and declarations ([#888](#888)) + Simplify GKO_REGISTER_OPERATION with lambdas ([#859](#859)) + Simplify copy to device in tests and examples ([#863](#863)) + More verbose output to array assertions ([#858](#858)) + Allow parallel compilation for Jacobi kernels ([#871](#871)) + Change clang-format pointer alignment to left ([#872](#872)) + Various improvements and fixes to the benchmarking framework ([#750](#750), [#759](#759), [#870](#870), [#911](#911), [#1033](#1033), [#1137](#1137)) + Various documentation improvements ([#892](#892), [#921](#921), [#950](#950), [#977](#977), [#1021](#1021), [#1068](#1068), [#1069](#1069), [#1080](#1080), [#1081](#1081), [#1108](#1108), [#1153](#1153), [#1154](#1154)) + Various CI improvements ([#868](#868), [#874](#874), [#884](#884), [#889](#889), [#899](#899), [#903](#903), [#922](#922), [#925](#925), [#930](#930), [#936](#936), [#937](#937), [#958](#958), [#882](#882), [#1011](#1011), [#1015](#1015), [#989](#989), [#1039](#1039), [#1042](#1042), [#1067](#1067), [#1073](#1073), [#1075](#1075), [#1083](#1083), [#1084](#1084), [#1085](#1085), [#1139](#1139), [#1178](#1178), [#1187](#1187))
This PR adds some reduction kernels for arrays. For CUDA and HIP the existing reduction kernels are reduced, with only one kernel added.
TODO