-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhparams_config.yml
61 lines (60 loc) · 1.78 KB
/
hparams_config.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
pytorch:
# Generic training settings
max_epochs: 40
batch_size: 32
loader_workers: 0 # https://github.com/giacomorebecchi/food-pricing/issues/45
lazy_dataset: False
shuffle_train_dataset: True
num_sanity_val_steps: 0
accumulate_grad_batches: null
accelerator: auto
devices: 1
# Size of initial and intermediate embeddings
img_dim: 224
embedding_dim: 300
language_feature_dim: 512
vision_feature_dim: 512
# Size of the layer after the concatenation
fusion_output_dim: 512
# Dropout
dropout_p: 0.4
# Callbacks
verbose: True
early_stop_patience: 40
backup_n_epochs: 5
# Optimization settings
optimizer_name: adamw
optimizer_lr: 0.00005
optimizer_weight_decay: 0.1
lr_scheduler_factor: 0.2
lr_scheduler_patience: 2
lr_scheduler_min_lr: 0.0000001
# Encoder optimization settings
encoder_optimizer_lr: 0.00001
encoder_optimizer_weight_decay: 0.1
# Storage of test predictions
store_submission_frame: True
# Unfreezing of encoders parameters
n_epochs_unfreeze_language_module: 10
n_epochs_unfreeze_vision_module: 10
n_epochs_unfreeze_dual_module: 10
xgb:
# Data transformation in embeddings
load_data: True # could be True if sure the cached arrays are correct
loader_workers: 0 # https://github.com/giacomorebecchi/food-pricing/issues/45
shuffle: False
# Limit combination of hyperparameters tested
max_iter: 1000 # intentionally very high
# XGB trainer hyperparameters
num_round: 100
early_stopping_rounds: 10
# XGB hyperparameters
booster: gbtree
tree_method: hist
colsample_bytree: [0.5, 0.6, 0.7, 0.8, 0.9, 1] # 6
objective: reg:squarederror
eta: [0.01, 0.05, 0.1, 0.2, 0.3] # 5
max_depth: [4, 5, 6, 7, 8] # 5
subsample: [0.8, 0.9, 1] # 3
# Storage of test predictions
store_submission_frame: True