-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathdatasets.py
219 lines (183 loc) · 8.01 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import os
import json
from torchvision import datasets, transforms
from torchvision.datasets.folder import ImageFolder, default_loader
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.data import create_transform
from PIL import Image
import torch
import numpy as np
import scipy.io
import moxing as mox
class CarsDataset(torch.utils.data.Dataset):
def __init__(self, data_dir, train=True, transform=None):
if train:
mat_anno = os.path.join(data_dir, 'devkit/cars_train_annos.mat')
data = os.path.join(data_dir, 'cars_train')
car_names = os.path.join(data_dir, 'devkit/cars_meta.mat')
cleaned=None
else:
mat_anno = os.path.join(data_dir, 'devkit/cars_test_annos.mat')
data = os.path.join(data_dir, 'cars_test')
car_names = os.path.join(data_dir, 'devkit/cars_meta.mat')
cleaned=None
self.full_data_set = scipy.io.loadmat(mat_anno)
self.car_annotations = self.full_data_set['annotations']
self.car_annotations = self.car_annotations[0]
if cleaned is not None:
cleaned_annos = []
print("Cleaning up data set (only take pics with rgb chans)...")
clean_files = np.loadtxt(cleaned, dtype=str)
for c in self.car_annotations:
if c[-1][0] in clean_files:
cleaned_annos.append(c)
self.car_annotations = cleaned_annos
self.car_names = scipy.io.loadmat(car_names)['class_names']
self.car_names = np.array(self.car_names[0])
self.data = data
self.transform = transform
def __len__(self):
return len(self.car_annotations)
def __getitem__(self, idx):
img_name = os.path.join(self.data, self.car_annotations[idx][-1][0])
image = Image.open(img_name).convert('RGB')
car_class = self.car_annotations[idx][-2][0][0]-1
if self.transform:
image = self.transform(image)
return image, car_class
def map_class(self, id):
id = np.ravel(id)
ret = self.car_names[id - 1][0][0]
return ret
class PetsDataset(torch.utils.data.Dataset):
# https://www.robots.ox.ac.uk/~vgg/data/pets/
def __init__(self,
root,
load_bytes=False,
train=True,
transform=None):
if train:
txt_path = os.path.join(root, 'annotations/trainval.txt')
else:
txt_path = os.path.join(root, 'annotations/test.txt')
self.image_path_list = []
self.label_list = []
with open(txt_path, 'r') as rf:
for line in rf:
str_list = line.strip().split(' ')
img_name = str_list[0]
self.image_path_list.append(os.path.join(root, 'images', img_name+'.jpg'))
label = int(str_list[1]) - 1
self.label_list.append(label)
if len(self.image_path_list) == 0:
raise(RuntimeError("Found 0 images in subfolders of: " + root + "\n"
"Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))
self.root = root
self.load_bytes = load_bytes
self.transform = transform
def __getitem__(self, index):
path = self.image_path_list[index]
target = self.label_list[index]
img = open(path, 'rb').read() if self.load_bytes else Image.open(path).convert('RGB')
if self.transform is not None:
img = self.transform(img)
if target is None:
target = torch.zeros(1).long()
return img, target
def __len__(self):
return len(self.image_path_list)
class INatDataset(ImageFolder):
def __init__(self, root, train=True, year=2018, transform=None, target_transform=None,
category='name', loader=default_loader):
self.transform = transform
self.loader = loader
self.target_transform = target_transform
self.year = year
# assert category in ['kingdom','phylum','class','order','supercategory','family','genus','name']
path_json = os.path.join(root, f'{"train" if train else "val"}{year}.json')
with open(path_json) as json_file:
data = json.load(json_file)
with open(os.path.join(root, 'categories.json')) as json_file:
data_catg = json.load(json_file)
path_json_for_targeter = os.path.join(root, f"train{year}.json")
with open(path_json_for_targeter) as json_file:
data_for_targeter = json.load(json_file)
targeter = {}
indexer = 0
for elem in data_for_targeter['annotations']:
king = []
king.append(data_catg[int(elem['category_id'])][category])
if king[0] not in targeter.keys():
targeter[king[0]] = indexer
indexer += 1
self.nb_classes = len(targeter)
self.samples = []
for elem in data['images']:
cut = elem['file_name'].split('/')
target_current = int(cut[2])
path_current = os.path.join(root, cut[0], cut[2], cut[3])
categors = data_catg[target_current]
target_current_true = targeter[categors[category]]
self.samples.append((path_current, target_current_true))
# __getitem__ and __len__ inherited from ImageFolder
def build_dataset(is_train, args):
transform = build_transform(is_train, args)
if args.data_set == 'CIFAR100':
dataset = datasets.CIFAR100(args.data_path, train=is_train, transform=transform)
nb_classes = 100
elif args.data_set == 'CIFAR10':
dataset = datasets.CIFAR10(args.data_path, train=is_train, transform=transform)
nb_classes = 10
elif args.data_set == 'IMNET':
root = os.path.join(args.data_path, 'train' if is_train else 'val')
dataset = datasets.ImageFolder(root, transform=transform)
nb_classes = 1000
elif args.data_set == 'INAT':
dataset = INatDataset(args.data_path, train=is_train, year=2018,
category=args.inat_category, transform=transform)
nb_classes = dataset.nb_classes
elif args.data_set == 'INAT19':
dataset = INatDataset(args.data_path, train=is_train, year=2019,
category=args.inat_category, transform=transform)
nb_classes = dataset.nb_classes
elif args.data_set == 'FLOWER':
root = os.path.join(args.data_path, 'train' if is_train else 'val')
dataset = datasets.ImageFolder(root, transform=transform)
nb_classes = 102
elif args.data_set == 'PET':
dataset = PetsDataset(args.data_path, train=is_train, transform=transform)
nb_classes = 37
elif args.data_set == 'CAR':
dataset = CarsDataset(args.data_path, train=is_train, transform=transform)
nb_classes = 196
return dataset, nb_classes
def build_transform(is_train, args):
resize_im = args.input_size > 32
if is_train:
# this should always dispatch to transforms_imagenet_train
transform = create_transform(
input_size=args.input_size,
is_training=True,
color_jitter=args.color_jitter,
auto_augment=args.aa,
interpolation=args.train_interpolation,
re_prob=args.reprob,
re_mode=args.remode,
re_count=args.recount,
)
if not resize_im:
# replace RandomResizedCropAndInterpolation with
# RandomCrop
transform.transforms[0] = transforms.RandomCrop(
args.input_size, padding=4)
return transform
t = []
if resize_im:
size = int((256 / 224) * args.input_size)
t.append(
transforms.Resize(size, interpolation=3), # to maintain same ratio w.r.t. 224 images
)
t.append(transforms.CenterCrop(args.input_size))
t.append(transforms.ToTensor())
t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD))
return transforms.Compose(t)