Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CLBlast: Fix handling of on-device tensor data #3447

Merged
merged 1 commit into from
Oct 5, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
CLBlast: Fix handling of on-device tensor data
Fix uploading tensor data to device, including 3D, 4D, and non-contiguous tensors.
Use correct offsets into data that is already in VRAM.
Correct handling of OpenCL events when multiple commands are queued.
  • Loading branch information
shibe2 committed Oct 5, 2023

Verified

This commit was signed with the committer’s verified signature.
benelan Ben Elan
commit 7d9e3ca6e092fd390bab73f5b903873126f6aa7d
86 changes: 54 additions & 32 deletions ggml-opencl.cpp
Original file line number Diff line number Diff line change
@@ -202,14 +202,14 @@ inline void get_scale_min_k4(int j, const __global uint8_t *q, uint8_t *d, uint8

__kernel void dequantize_block_q2_K(__global const struct block_q2_K *x, __global float *yy)
{
const int i = get_group_id(0);
const int i = get_group_id(0) + get_global_offset(0);
const int tid = get_local_id(0);
const int n = tid / 32;
const int l = tid - 32 * n;
const int is = 8 * n + l / 16;

const uint8_t q = x[i].qs[32 * n + l];
__global float *y = yy + i * QK_K + 128 * n;
__global float *y = yy + get_group_id(0) * QK_K + 128 * n;

const float dall = vload_half(0, &x[i].d);
const float dmin = vload_half(0, &x[i].dmin);
@@ -223,7 +223,7 @@ __kernel void dequantize_block_q2_K(__global const struct block_q2_K *x, __globa
__kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __global float *yy)
{
int r = get_local_id(0) / 4;
int i = get_group_id(0);
int i = get_group_id(0) + get_global_offset(0);
int tid = r / 2;
int is0 = r % 2;
int l0 = 16 * is0 + 4 * (get_local_id(0) % 4);
@@ -241,7 +241,7 @@ __kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __globa
float d_all = vload_half(0, &x[i].d);
float dl = d_all * (us - 32);

__global float *y = yy + i * QK_K + 128 * n + 32 * j;
__global float *y = yy + get_group_id(0) * QK_K + 128 * n + 32 * j;
const __global uint8_t *q = x[i].qs + 32 * n;
const __global uint8_t *hm = x[i].hmask;

@@ -251,14 +251,14 @@ __kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __globa

__kernel void dequantize_block_q4_K(__global const struct block_q4_K *x, __global float *yy)
{
const int i = get_group_id(0);
const int i = get_group_id(0) + get_global_offset(0);
const int tid = get_local_id(0);
const int il = tid / 8;
const int ir = tid % 8;
const int is = 2 * il;
const int n = 4;

__global float *y = yy + i * QK_K + 64 * il + n * ir;
__global float *y = yy + get_group_id(0) * QK_K + 64 * il + n * ir;

const float dall = vload_half(0, &x[i].d);
const float dmin = vload_half(0, &x[i].dmin);
@@ -281,13 +281,13 @@ __kernel void dequantize_block_q4_K(__global const struct block_q4_K *x, __globa

__kernel void dequantize_block_q5_K(__global const struct block_q5_K *x, __global float *yy)
{
const int i = get_group_id(0);
const int i = get_group_id(0) + get_global_offset(0);
const int tid = get_local_id(0);
const int il = tid / 16;
const int ir = tid % 16;
const int is = 2 * il;

__global float *y = yy + i * QK_K + 64 * il + 2 * ir;
__global float *y = yy + get_group_id(0) * QK_K + 64 * il + 2 * ir;

const float dall = vload_half(0, &x[i].d);
const float dmin = vload_half(0, &x[i].dmin);
@@ -313,13 +313,13 @@ __kernel void dequantize_block_q5_K(__global const struct block_q5_K *x, __globa

__kernel void dequantize_block_q6_K(__global const struct block_q6_K *x, __global float *yy)
{
const int i = get_group_id(0);
const int i = get_group_id(0) + get_global_offset(0);
const int tid = get_local_id(0);
const int ip = tid / 32;
const int il = tid - 32 * ip;
const int is = 8 * ip + il / 16;

__global float *y = yy + i * QK_K + 128 * ip + il;
__global float *y = yy + get_group_id(0) * QK_K + 128 * ip + il;

const float d = vload_half(0, &x[i].d);

@@ -730,7 +730,7 @@ __kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) {
const uint qk = QUANT_K;
const uint qr = QUANT_R;

const int ib = i/qk; // block index
const int ib = i/qk + get_global_offset(0); // block index
const int iqs = (i%qk)/qr; // quant index
const int iybs = i - i%qk; // y block start index
const int y_offset = qr == 1 ? 1 : qk/2;
@@ -1349,30 +1349,42 @@ static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t o
const enum ggml_type type = src->type;
const size_t ts = ggml_type_size(type);
const size_t bs = ggml_blck_size(type);
const uint64_t row_size = ts*ne0/bs;

const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
if (nb0 == ts && nb1 == ts*ne0/bs) {
err = clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*nb1, x, 0, NULL, ev);
return err;
const char * x = (const char *) src->data + i2*nb2 + i3*nb3;
if (nb0 == ts && nb1 == row_size) {
return clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*row_size, x, 0, NULL, ev);
}
if (nb0 == ts) {
const size_t buffer_origin[3] = { offset, 0, 0 };
const size_t host_origin[3] = { 0, 0, 0 };
const size_t region[3] = { ts*ne0/bs, ne1, 1 };
err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts*ne0/bs, 0, nb1, 0, x, 0, NULL, ev);
return err;
const size_t region[3] = { row_size, ne1, 1 };
return clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, row_size, 0, nb1, 0, x, 0, NULL, ev);
}
std::vector<cl_event> events;
if (ev && ne1>1) events.reserve(ne1-1);
for (uint64_t i1 = 0; i1 < ne1; i1++) {
// pretend the row is a matrix with cols=1
const size_t buffer_origin[3] = { offset, i1, 0 };
const size_t buffer_origin[3] = { offset + i1*row_size, 0, 0 };
const size_t host_origin[3] = { 0, 0, 0 };
const size_t region[3] = { ts/bs, ne0, 1 };
err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, 0, 0, nb0, 0, ((const char *)x) + i1*nb0, 0, NULL, ev);
const size_t region[3] = { ts, ne0/bs, 1 };
// if an event is requested, make the last write wait for all previous writes to complete
if (ev && i1) {
events.push_back(*ev);
}
cl_uint nevents = i1 == ne1-1 ? events.size() : 0U;
err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts, 0, nb0, 0, x + i1*nb1, nevents, nevents ? events.data() : nullptr, ev);
if (err != CL_SUCCESS) {
break;
for (auto event : events) {
clReleaseEvent(event);
}
return err;
}
}
return err;
for (auto event : events) {
CL_CHECK(clReleaseEvent(event));
}
return CL_SUCCESS;
}

static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@@ -1503,6 +1515,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);

size_t x_offset = 0;
int64_t pi02 = -1;
int64_t pi03 = -1;

@@ -1513,7 +1526,9 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
int64_t i02 = i12 / r2;

// copy data to device
if (src0->backend != GGML_BACKEND_GPU && (i02 != pi02 || i03 != pi03)) {
if (src0->backend == GGML_BACKEND_GPU) {
x_offset = (i03 * ne02 + i02) * x_ne;
} else if (i02 != pi02 || i03 != pi03) {
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
pi02 = i02;
pi03 = i03;
@@ -1528,7 +1543,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
clblast::Transpose::kYes, clblast::Transpose::kNo,
ne01, ne11, ne10,
alpha,
d_X, 0, ne00,
d_X, x_offset, ne00,
d_Y, 0, ne10,
beta,
d_D, 0, ne01,
@@ -1596,6 +1611,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
bool src1_cont_rows = nb10 == sizeof(float);
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);

size_t x_offset = 0;
int64_t pi02 = -1;
int64_t pi03 = -1;

@@ -1606,7 +1622,9 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
int64_t i02 = i12 / r2;

// copy src0 to device
if (src0->backend != GGML_BACKEND_GPU && (i02 != pi02 || i03 != pi03)) {
if (src0->backend == GGML_BACKEND_GPU) {
x_offset = (i03 * ne02 + i02) * x_ne;
} else if (i02 != pi02 || i03 != pi03) {
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
pi02 = i02;
pi03 = i03;
@@ -1646,7 +1664,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
clblast::Transpose::kYes, clblast::Transpose::kNo,
ne01, ne11, ne10,
alpha,
d_X, 0, ne00,
d_X, x_offset, ne00,
d_Y, 0, ne10,
beta,
d_D, 0, ne01,
@@ -1696,7 +1714,8 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
const int x_bps = x_ne / ggml_blck_size(type); // blocks per 2D slice
const size_t q_sz = ggml_type_size(type) * x_bps;

size_t x_size;
size_t y_size;
@@ -1764,9 +1783,10 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
} else { // general dequantization kernel + CLBlast matrix matrix multiplication
// convert src0 to fp32 on device
const size_t global = x_ne / global_denom;
const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0;
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, offset > 0 ? &offset : NULL, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));

// copy src1 to device
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
@@ -1888,17 +1908,19 @@ void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
const int64_t ne3 = tensor->ne[3];

const ggml_type type = tensor->type;
const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type);
const size_t s_sz = ggml_type_size(type) * (size_t) (ne0 * ne1 / ggml_blck_size(type));
const size_t q_sz = s_sz * (size_t) (ne2 * ne3);

size_t q_size;
cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size);

tensor->data = data;
// copy tensor to device
size_t offset = 0;
for (int64_t i3 = 0; i3 < ne3; i3++) {
for (int64_t i2 = 0; i2 < ne2; i2++) {
int i = i3*ne2 + i2;
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, dst, i*ne0*ne1, tensor, i3, i2, NULL));
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, dst, offset, tensor, i3, i2, NULL));
offset += s_sz;
}
}