Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bug: Speculative Decoding "Segmentation fault (core dumped)" #10176

Closed
AbdullahMPrograms opened this issue Nov 4, 2024 · 13 comments · Fixed by #10185, #10192 or #10289
Closed

Bug: Speculative Decoding "Segmentation fault (core dumped)" #10176

AbdullahMPrograms opened this issue Nov 4, 2024 · 13 comments · Fixed by #10185, #10192 or #10289
Labels
bug Something isn't working low severity Used to report low severity bugs in llama.cpp (e.g. cosmetic issues, non critical UI glitches)

Comments

@AbdullahMPrograms
Copy link

What happened?

Hey all, I wanted to report a segmentation fault issue with llama-speculative. I have never once gotten this executable to work; I don't believe it is my command, as I have tried copy-pasting the speculative example commands as well.

Name and Version

ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 3 CUDA devices:
Device 0: Tesla P40, compute capability 6.1, VMM: yes
Device 1: Tesla P40, compute capability 6.1, VMM: yes
Device 2: Tesla P40, compute capability 6.1, VMM: yes
version: 4031 (d5a409e)
built with cc (Ubuntu 13.2.0-23ubuntu4) 13.2.0 for x86_64-linux-gnu

What operating system are you seeing the problem on?

No response

Relevant log output

./LLM/llama.cpp/llama-speculative \
-m /home/ultimis/LLM/Models/mradermacher/Meta-Llama-3.1-70B-Instruct-i1-GGUF/Meta-Llama-3.1-70B-Instruct.i1-Q4_K_M.gguf \
-md /home/ultimis/LLM/Models/hugging-quants/Llama-3.2-1B-Instruct-Q8_0-GGUF/llama-3.2-1b-instruct-q8_0.gguf \
-p "// Quick-sort implementation in C (4 spaces indentation + detailed comments) and sample usage" \
-c 8000 -ngl 99 -ngld 30 --split-mode row --draft 16
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 3 CUDA devices:
  Device 0: Tesla P40, compute capability 6.1, VMM: yes
  Device 1: Tesla P40, compute capability 6.1, VMM: yes
  Device 2: Tesla P40, compute capability 6.1, VMM: yes
build: 4031 (d5a409e5) with cc (Ubuntu 13.2.0-23ubuntu4) 13.2.0 for x86_64-linux-gnu
llama_load_model_from_file: using device CUDA0 (Tesla P40) - 24286 MiB free
llama_load_model_from_file: using device CUDA1 (Tesla P40) - 24290 MiB free
llama_load_model_from_file: using device CUDA2 (Tesla P40) - 24290 MiB free
llama_model_loader: loaded meta data with 40 key-value pairs and 724 tensors from /home/ultimis/LLM/Models/mradermacher/Meta-Llama-3.1-70B-Instruct-i1-GGUF/Meta-Llama-3.1-70B-Instruct.i1-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Meta Llama 3.1 70B Instruct
llama_model_loader: - kv   3:                           general.finetune str              = Instruct
llama_model_loader: - kv   4:                           general.basename str              = Meta-Llama-3.1
llama_model_loader: - kv   5:                         general.size_label str              = 70B
llama_model_loader: - kv   6:                            general.license str              = llama3.1
llama_model_loader: - kv   7:                               general.tags arr[str,6]       = ["facebook", "meta", "pytorch", "llam...
llama_model_loader: - kv   8:                          general.languages arr[str,8]       = ["en", "de", "fr", "it", "pt", "hi", ...
llama_model_loader: - kv   9:                          llama.block_count u32              = 80
llama_model_loader: - kv  10:                       llama.context_length u32              = 131072
llama_model_loader: - kv  11:                     llama.embedding_length u32              = 8192
llama_model_loader: - kv  12:                  llama.feed_forward_length u32              = 28672
llama_model_loader: - kv  13:                 llama.attention.head_count u32              = 64
llama_model_loader: - kv  14:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv  15:                       llama.rope.freq_base f32              = 500000.000000
llama_model_loader: - kv  16:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  17:                          general.file_type u32              = 15
llama_model_loader: - kv  18:                           llama.vocab_size u32              = 128256
llama_model_loader: - kv  19:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv  20:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  21:                         tokenizer.ggml.pre str              = llama-bpe
llama_model_loader: - kv  22:                      tokenizer.ggml.tokens arr[str,128256]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  23:                  tokenizer.ggml.token_type arr[i32,128256]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  24:                      tokenizer.ggml.merges arr[str,280147]  = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv  25:                tokenizer.ggml.bos_token_id u32              = 128000
llama_model_loader: - kv  26:                tokenizer.ggml.eos_token_id u32              = 128009
llama_model_loader: - kv  27:                    tokenizer.chat_template str              = {% set loop_messages = messages %}{% ...
llama_model_loader: - kv  28:               general.quantization_version u32              = 2
llama_model_loader: - kv  29:                                general.url str              = https://huggingface.co/mradermacher/M...
llama_model_loader: - kv  30:              mradermacher.quantize_version str              = 2
llama_model_loader: - kv  31:                  mradermacher.quantized_by str              = mradermacher
llama_model_loader: - kv  32:                  mradermacher.quantized_at str              = 2024-07-29T10:58:40+02:00
llama_model_loader: - kv  33:                  mradermacher.quantized_on str              = db1
llama_model_loader: - kv  34:                         general.source.url str              = https://huggingface.co/meta-llama/Met...
llama_model_loader: - kv  35:                  mradermacher.convert_type str              = hf
llama_model_loader: - kv  36:                      quantize.imatrix.file str              = Meta-Llama-3.1-70B-Instruct-i1-GGUF/i...
llama_model_loader: - kv  37:                   quantize.imatrix.dataset str              = imatrix-training-full-3
llama_model_loader: - kv  38:             quantize.imatrix.entries_count i32              = 560
llama_model_loader: - kv  39:              quantize.imatrix.chunks_count i32              = 314
llama_model_loader: - type  f32:  162 tensors
llama_model_loader: - type q4_K:  441 tensors
llama_model_loader: - type q5_K:   40 tensors
llama_model_loader: - type q6_K:   81 tensors
llm_load_vocab: special tokens cache size = 256
llm_load_vocab: token to piece cache size = 0.7999 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 128256
llm_load_print_meta: n_merges         = 280147
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 131072
llm_load_print_meta: n_embd           = 8192
llm_load_print_meta: n_layer          = 80
llm_load_print_meta: n_head           = 64
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 8
llm_load_print_meta: n_embd_k_gqa     = 1024
llm_load_print_meta: n_embd_v_gqa     = 1024
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 28672
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 500000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 131072
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: ssm_dt_b_c_rms   = 0
llm_load_print_meta: model type       = 70B
llm_load_print_meta: model ftype      = Q4_K - Medium
llm_load_print_meta: model params     = 70.55 B
llm_load_print_meta: model size       = 39.59 GiB (4.82 BPW)
llm_load_print_meta: general.name     = Meta Llama 3.1 70B Instruct
llm_load_print_meta: BOS token        = 128000 '<|begin_of_text|>'
llm_load_print_meta: EOS token        = 128009 '<|eot_id|>'
llm_load_print_meta: EOT token        = 128009 '<|eot_id|>'
llm_load_print_meta: EOM token        = 128008 '<|eom_id|>'
llm_load_print_meta: LF token         = 128 'Ä'
llm_load_print_meta: EOG token        = 128008 '<|eom_id|>'
llm_load_print_meta: EOG token        = 128009 '<|eot_id|>'
llm_load_print_meta: max token length = 256
llm_load_tensors: offloading 80 repeating layers to GPU
llm_load_tensors: offloading output layer to GPU
llm_load_tensors: offloaded 81/81 layers to GPU
llm_load_tensors: CPU_Mapped model buffer size =   563.62 MiB
llm_load_tensors:      CUDA0 model buffer size =     1.69 MiB
llm_load_tensors:      CUDA1 model buffer size =     1.69 MiB
llm_load_tensors:      CUDA2 model buffer size =     1.66 MiB
llm_load_tensors: CUDA0_Split model buffer size = 13302.19 MiB
llm_load_tensors: CUDA1_Split model buffer size = 12949.31 MiB
llm_load_tensors: CUDA2_Split model buffer size = 13722.95 MiB
...................................................................................................
llama_new_context_with_model: n_seq_max     = 1
llama_new_context_with_model: n_ctx         = 8000
llama_new_context_with_model: n_ctx_per_seq = 8000
llama_new_context_with_model: n_batch       = 2048
llama_new_context_with_model: n_ubatch      = 512
llama_new_context_with_model: flash_attn    = 0
llama_new_context_with_model: freq_base     = 500000.0
llama_new_context_with_model: freq_scale    = 1
llama_new_context_with_model: n_ctx_per_seq (8000) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_kv_cache_init:      CUDA0 KV buffer size =   843.75 MiB
llama_kv_cache_init:      CUDA1 KV buffer size =   843.75 MiB
llama_kv_cache_init:      CUDA2 KV buffer size =   812.50 MiB
llama_new_context_with_model: KV self size  = 2500.00 MiB, K (f16): 1250.00 MiB, V (f16): 1250.00 MiB
llama_new_context_with_model:  CUDA_Host  output buffer size =     0.49 MiB
llama_new_context_with_model:      CUDA0 compute buffer size =  1079.63 MiB
llama_new_context_with_model:      CUDA1 compute buffer size =  1079.63 MiB
llama_new_context_with_model:      CUDA2 compute buffer size =  1079.63 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =    31.63 MiB
llama_new_context_with_model: graph nodes  = 2566
llama_new_context_with_model: graph splits = 4
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
llama_load_model_from_file: using device CUDA0 (Tesla P40) - 8856 MiB free
llama_load_model_from_file: using device CUDA1 (Tesla P40) - 8460 MiB free
llama_load_model_from_file: using device CUDA2 (Tesla P40) - 8090 MiB free
llama_model_loader: loaded meta data with 30 key-value pairs and 147 tensors from /home/ultimis/LLM/Models/hugging-quants/Llama-3.2-1B-Instruct-Q8_0-GGUF/llama-3.2-1b-instruct-q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Llama 3.2 1B Instruct
llama_model_loader: - kv   3:                           general.finetune str              = Instruct
llama_model_loader: - kv   4:                           general.basename str              = Llama-3.2
llama_model_loader: - kv   5:                         general.size_label str              = 1B
llama_model_loader: - kv   6:                               general.tags arr[str,6]       = ["facebook", "meta", "pytorch", "llam...
llama_model_loader: - kv   7:                          general.languages arr[str,8]       = ["en", "de", "fr", "it", "pt", "hi", ...
llama_model_loader: - kv   8:                          llama.block_count u32              = 16
llama_model_loader: - kv   9:                       llama.context_length u32              = 131072
llama_model_loader: - kv  10:                     llama.embedding_length u32              = 2048
llama_model_loader: - kv  11:                  llama.feed_forward_length u32              = 8192
llama_model_loader: - kv  12:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv  13:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv  14:                       llama.rope.freq_base f32              = 500000.000000
llama_model_loader: - kv  15:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  16:                 llama.attention.key_length u32              = 64
llama_model_loader: - kv  17:               llama.attention.value_length u32              = 64
llama_model_loader: - kv  18:                          general.file_type u32              = 7
llama_model_loader: - kv  19:                           llama.vocab_size u32              = 128256
llama_model_loader: - kv  20:                 llama.rope.dimension_count u32              = 64
llama_model_loader: - kv  21:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  22:                         tokenizer.ggml.pre str              = llama-bpe
llama_model_loader: - kv  23:                      tokenizer.ggml.tokens arr[str,128256]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  24:                  tokenizer.ggml.token_type arr[i32,128256]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  25:                      tokenizer.ggml.merges arr[str,280147]  = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv  26:                tokenizer.ggml.bos_token_id u32              = 128000
llama_model_loader: - kv  27:                tokenizer.ggml.eos_token_id u32              = 128009
llama_model_loader: - kv  28:                    tokenizer.chat_template str              = {% set loop_messages = messages %}{% ...
llama_model_loader: - kv  29:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   34 tensors
llama_model_loader: - type q8_0:  113 tensors
llm_load_vocab: special tokens cache size = 256
llm_load_vocab: token to piece cache size = 0.7999 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 128256
llm_load_print_meta: n_merges         = 280147
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 131072
llm_load_print_meta: n_embd           = 2048
llm_load_print_meta: n_layer          = 16
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_rot            = 64
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 64
llm_load_print_meta: n_embd_head_v    = 64
llm_load_print_meta: n_gqa            = 4
llm_load_print_meta: n_embd_k_gqa     = 512
llm_load_print_meta: n_embd_v_gqa     = 512
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 8192
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 500000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 131072
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: ssm_dt_b_c_rms   = 0
llm_load_print_meta: model type       = 1B
llm_load_print_meta: model ftype      = Q8_0
llm_load_print_meta: model params     = 1.24 B
llm_load_print_meta: model size       = 1.22 GiB (8.50 BPW)
llm_load_print_meta: general.name     = Llama 3.2 1B Instruct
llm_load_print_meta: BOS token        = 128000 '<|begin_of_text|>'
llm_load_print_meta: EOS token        = 128009 '<|eot_id|>'
llm_load_print_meta: EOT token        = 128009 '<|eot_id|>'
llm_load_print_meta: EOM token        = 128008 '<|eom_id|>'
llm_load_print_meta: LF token         = 128 'Ä'
llm_load_print_meta: EOG token        = 128008 '<|eom_id|>'
llm_load_print_meta: EOG token        = 128009 '<|eot_id|>'
llm_load_print_meta: max token length = 256
llm_load_tensors: offloading 16 repeating layers to GPU
llm_load_tensors: offloading output layer to GPU
llm_load_tensors: offloaded 17/17 layers to GPU
llm_load_tensors: CPU_Mapped model buffer size =   266.16 MiB
llm_load_tensors:      CUDA0 model buffer size =     0.09 MiB
llm_load_tensors:      CUDA1 model buffer size =     0.09 MiB
llm_load_tensors:      CUDA2 model buffer size =     0.07 MiB
llm_load_tensors: CUDA0_Split model buffer size =   369.75 MiB
llm_load_tensors: CUDA1_Split model buffer size =   369.75 MiB
llm_load_tensors: CUDA2_Split model buffer size =   512.66 MiB
..............................................................
llama_new_context_with_model: n_seq_max     = 1
llama_new_context_with_model: n_ctx         = 8000
llama_new_context_with_model: n_ctx_per_seq = 8000
llama_new_context_with_model: n_batch       = 2048
llama_new_context_with_model: n_ubatch      = 512
llama_new_context_with_model: flash_attn    = 0
llama_new_context_with_model: freq_base     = 500000.0
llama_new_context_with_model: freq_scale    = 1
llama_new_context_with_model: n_ctx_per_seq (8000) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_kv_cache_init:      CUDA0 KV buffer size =    93.75 MiB
llama_kv_cache_init:      CUDA1 KV buffer size =    93.75 MiB
llama_kv_cache_init:      CUDA2 KV buffer size =    62.50 MiB
llama_new_context_with_model: KV self size  =  250.00 MiB, K (f16):  125.00 MiB, V (f16):  125.00 MiB
llama_new_context_with_model:  CUDA_Host  output buffer size =     0.49 MiB
llama_new_context_with_model:      CUDA0 compute buffer size =   531.63 MiB
llama_new_context_with_model:      CUDA1 compute buffer size =   531.63 MiB
llama_new_context_with_model:      CUDA2 compute buffer size =   531.63 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =    19.63 MiB
llama_new_context_with_model: graph nodes  = 518
llama_new_context_with_model: graph splits = 4
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)


<|begin_of_text|>// Quick-sort implementation in C (4 spaces indentation + detailed comments) and sample usage.

Segmentation fault (core dumped)
@AbdullahMPrograms AbdullahMPrograms added bug-unconfirmed critical severity Used to report critical severity bugs in llama.cpp (e.g. Crashing, Corrupted, Dataloss) labels Nov 4, 2024
@slaren
Copy link
Collaborator

slaren commented Nov 4, 2024

Looks like a crash in the DRY sampler when it is cloned due to model being NULL. Removing the DRY sampler from the sequence with --sampling-seq should allow you to use the speculative example until this is fixed. cc @wwoodsTM

=================================================================
==2432259==ERROR: AddressSanitizer: SEGV on unknown address 0x000000000038 (pc 0x5609ca4f6e80 bp 0x7fff9a863600 sp 0x7fff9a8635f0 T0)
==2432259==The signal is caused by a READ memory access.
==2432259==Hint: address points to the zero page.
    #0 0x5609ca4f6e80 in llama_n_ctx_train src/llama.cpp:19713
    #1 0x5609ca50b3ae in llama_sampler_init_dry src/llama.cpp:21871
    #2 0x5609ca73b0cb in llama_sampler_dry_clone src/llama-sampling.cpp:1880
    #3 0x5609ca72dc69 in llama_sampler_clone src/llama-sampling.cpp:233
    #4 0x5609ca72ef9b in llama_sampler_chain_clone src/llama-sampling.cpp:333
    #5 0x5609ca72dc69 in llama_sampler_clone src/llama-sampling.cpp:233
    #6 0x5609ca9aa4a3 in common_sampler_clone(common_sampler*) common/sampling.cpp:259
    #7 0x5609caa36d70 in main examples/speculative/speculative.cpp:454
    #8 0x7fc44782814f in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58
    #9 0x7fc447828208 in __libc_start_main_impl ../csu/libc-start.c:360
    #10 0x5609c97a9084 in _start (/home/diego/code/llama.cpp/llama-speculative+0x18e084) (BuildId: 8bdd8edabb9d68458f2c0ed5c8c4ad2e5801a83a)

AddressSanitizer can not provide additional info.
SUMMARY: AddressSanitizer: SEGV src/llama.cpp:19713 in llama_n_ctx_train

@slaren slaren added bug Something isn't working low severity Used to report low severity bugs in llama.cpp (e.g. cosmetic issues, non critical UI glitches) and removed bug-unconfirmed critical severity Used to report critical severity bugs in llama.cpp (e.g. Crashing, Corrupted, Dataloss) labels Nov 4, 2024
@slaren
Copy link
Collaborator

slaren commented Nov 4, 2024

While running this with address sanitizer, it also detects a buffer overflow after generating tokens for a while (unrelated to the DRY issue):

==2437758==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x60300241c108 at pc 0x5621951d6375 bp 0x7ffc15d82830 sp 0x7ffc15d82820
READ of size 4 at 0x60300241c108 thread T0
    #0 0x5621951d6374 in main examples/speculative/speculative.cpp:271
    #1 0x7fefa962814f in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58
    #2 0x7fefa9628208 in __libc_start_main_impl ../csu/libc-start.c:360
    #3 0x562193f4b084 in _start (/home/diego/code/llama.cpp/llama-speculative+0x18e084) (BuildId: 8bdd8edabb9d68458f2c0ed5c8c4ad2e5801a83a)

0x60300241c108 is located 0 bytes after 24-byte region [0x60300241c0f0,0x60300241c108)
allocated by thread T0 here:
    #0 0x7fefd02dfba8 in operator new(unsigned long) ../../../../src/libsanitizer/asan/asan_new_delete.cpp:95
    #1 0x562194f07cfa in std::__new_allocator<llama_token_data>::allocate(unsigned long, void const*) /usr/include/c++/13/bits/new_allocator.h:147
    #2 0x562194ef7fa2 in std::allocator_traits<std::allocator<llama_token_data> >::allocate(std::allocator<llama_token_data>&, unsigned long) /usr/include/c++/13/bits/alloc_traits.h:482
    #3 0x562194ef7fa2 in std::_Vector_base<llama_token_data, std::allocator<llama_token_data> >::_M_allocate(unsigned long) /usr/include/c++/13/bits/stl_vector.h:378
    #4 0x5621951ecfeb in void std::vector<llama_token_data, std::allocator<llama_token_data> >::_M_range_initialize<llama_token_data*>(llama_token_data*, llama_token_data*, std::forward_iterator_tag) /usr/include/c++/13/bits/stl_vector.h:1689
    #5 0x5621951ea7b6 in std::vector<llama_token_data, std::allocator<llama_token_data> >::vector<llama_token_data*, void>(llama_token_data*, llama_token_data*, std::allocator<llama_token_data> const&) /usr/include/c++/13/bits/stl_vector.h:708
    #6 0x5621951daa7d in main examples/speculative/speculative.cpp:546
    #7 0x7fefa962814f in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58

SUMMARY: AddressSanitizer: heap-buffer-overflow examples/speculative/speculative.cpp:271 in main

cc @ggerganov

@AbdullahMPrograms
Copy link
Author

AbdullahMPrograms commented Nov 4, 2024

Interestingly, I seem to have run into a different issue with the --sampling-seq modifier when using speculative decoding with Qwen 2.5, Llama3.1 seems to be working just fine:
speculativelog.txt

@slaren
Copy link
Collaborator

slaren commented Nov 4, 2024

Looks like an issue with -sm row, but I cannot reproduce it.

@AbdullahMPrograms
Copy link
Author

It seems it only occurs when using Qwen2.5-0.5B as the draft model, 1.5B and onwards operate as expected

@slaren
Copy link
Collaborator

slaren commented Nov 5, 2024

I could reproduce it now. I think this is because this model is so small that the tensor does not have enough rows, and some devices end with 0 rows, which causes the event to not be created. It can be reproduced with llama-cli, it's not specific to the speculative example. cc @JohannesGaessler

@AbdullahMPrograms
Copy link
Author

I see, that does make sense

@wwoodsTM
Copy link
Contributor

wwoodsTM commented Nov 5, 2024

Looks like a crash in the DRY sampler when it is cloned due to model being NULL. Removing the DRY sampler from the sequence with --sampling-seq should allow you to use the speculative example until this is fixed. cc @wwoodsTM

Thank you for the heads up, I will try to get this fixed ASAP.

@wwoodsTM
Copy link
Contributor

wwoodsTM commented Nov 6, 2024

@slaren PR #10192 should fix this cloning issue. You pinpointing the issue so precisely was very helpful; thanks.

@ggerganov
Copy link
Owner

While running this with address sanitizer, it also detects a buffer overflow after generating tokens for a while (unrelated to the DRY issue):

@slaren Do you have a repro? I'm running a few tests here with --sampling-seq k and cannot reproduce the sanitizer issue.

@slaren
Copy link
Collaborator

slaren commented Nov 6, 2024

I can reproduce it reliably with this command line:

./llama-speculative \
    -m models/Meta-Llama-3.1-8B-Instruct/ggml-model-Q4_0.gguf \
    -md models/Llama-3.2-1B-Instruct-IQ3_M.gguf \
    -p "// Quick-sort implementation in C (4 spaces indentation + detailed comments) and sample usage" \
    -c 8000 -ngl 99 -ngld 30 --draft 16 --sampling-seq k,m,t

@ggerganov
Copy link
Owner

I am unable to reproduce on my end and the address sanitizer does not produce any errors up until the context is filled. If you could generate a detailed log with -lv 1 --log-file log.txt might help to pinpoint the problem.

@slaren
Copy link
Collaborator

slaren commented Nov 14, 2024

speculative log.txt

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working low severity Used to report low severity bugs in llama.cpp (e.g. cosmetic issues, non critical UI glitches)
Projects
None yet
4 participants