forked from ykai16/diHMM
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnvblas.conf
46 lines (38 loc) · 2.21 KB
/
nvblas.conf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#This is the configuration file to use NVBLAS Library
# Setup the environment variable NVBLAS_CONFIG_FILE to specify your own config file.
# By default, if NVBLAS_CONFIG_FILE is not defined,
# NVBLAS Library will try to open the file "nvblas.conf" in its current directory
# Example : NVBLAS_CONFIG_FILE /home/cuda_user/my_nvblas.conf
# The config file should have restricted write permissions accesses
# Specify which output log file (default is stderr) NVBLAS_LOGFILE nvblas.log
# Enable trace log of every intercepted BLAS calls NVBLAS_TRACE_LOG_ENABLED
#Put here the CPU BLAS fallback Library of your choice
#It is strongly advised to use full path to describe the location of the CPU Library NVBLAS_CPU_BLAS_LIB /usr/lib/libopenblas.so #NVBLAS_CPU_BLAS_LIB <mkl_path_installtion>/libmkl_rt.so # List of GPU devices Id to participate to the computation
NVBLAS_CPU_BLAS_LIB /usr/lib/libopenblas.so
# Use ALL if you want all your GPUs to contribute
# Use ALL0, if you want all your GPUs of the same type as device 0 to contribute
# However, NVBLAS consider that all GPU have the same performance and PCI bandwidth
# By default if no GPU are listed, only device 0 will be used
#NVBLAS_GPU_LIST 0 2 4
#NVBLAS_GPU_LIST ALL
#NVBLAS_GPU_LIST ALL0
#NVBLAS_GPU_LIST ALL
# Tile Dimension
NVBLAS_TILE_DIM 2048
# Autopin Memory
NVBLAS_AUTOPIN_MEM_ENABLED
#List of BLAS routines that are prevented from running on GPU (use for debugging purpose
# The current list of BLAS routines supported by NVBLAS are
# GEMM, SYRK, HERK, TRSM, TRMM, SYMM, HEMM, SYR2K, HER2K
#NVBLAS_GPU_DISABLED_SGEMM
#NVBLAS_GPU_DISABLED_DGEMM
#NVBLAS_GPU_DISABLED_CGEMM
#NVBLAS_GPU_DISABLED_ZGEMM
# Computation can be optionally hybridized between CPU and GPU
# By default, GPU-supported BLAS routines are ran fully on GPU# The option NVBLAS_CPU_RATIO_<BLAS_ROUTINE> give the ratio [0,1]
# of the amount of computation that should be done on CPU
# CAUTION : this option should be used wisely because it can actually
# significantly reduced the overall performance if too much work is given to CPU
#NVBLAS_CPU_RATIO_CGEMM 0.07
#Read more at: http://docs.nvidia.com/cuda/nvblas/index.html#ixzz4u7GBMb9J
#Follow us: @GPUComputing on Twitter | NVIDIA on Facebook