-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
142 lines (116 loc) · 4.85 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os, sys
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider, RadioButtons
import matplotlib.ticker
import xspec
def make_plot(plot, energies, modelValues, compValues, kind='mo'):
if len(compValues) > 1:
for i in range(len(compValues)):
plot.plot(energies, compValues[i], lw=1, ls='--', c='C{}'.format(i+1))
plot.plot(energies, modelValues, lw=2, c='k')
if 'eem' in kind:
plot.set_ylabel(r'keV$^2$ (Photons cm$^{-2}$ s$^{-1}$ keV$^{-1}$)')
elif 'em' in kind:
plot.set_ylabel(r'keV (Photons cm$^{-2}$ s$^{-1}$ keV$^{-1}$)')
else:
plot.set_ylabel(r'Photons cm$^{-2}$ s$^{-1}$ keV$^{-1}$')
#plot.set_yticks([0.001,0.01,0.1,10.0,100.0])
#plot.set_yticklabels(['0.001','0.01','0.1','10.0','100.0'])
plot.set_xlim(0.095,105.0)
plot.set_ylim(max(min(modelValues), 1.2e-3*max(modelValues)), 1.2*max(modelValues))
plot.set_xscale('log')
plot.get_xaxis().set_major_formatter(matplotlib.ticker.FormatStrFormatter("%g"))
plot.set_yscale('log')
plot.set_xlabel('Energy (keV)')
plot.grid()
return plot
def read_sliders(list_sliders, type_sliders):
params = []
for i, (slider, type_slider) in enumerate(zip(list_sliders, type_sliders)):
if 'log' in type_slider:
params.append(10**slider.val)
slider.valtext.set_text(slider.valfmt % 10**slider.val)
else:
params.append(slider.val)
return params
def evaluate_model(params, model, kind):
model.setPars(*params)
xspec.Plot(kind)
xVals = xspec.Plot.x()
modVals = xspec.Plot.model()
compVals = []
if len(model.componentNames) > 1:
j = 0
for i, componentName in enumerate(model.componentNames):
if 'norm' in getattr(model, componentName).parameterNames:
j+=1
if j > 1:
for i in range(j):
compVals.append(xspec.Plot.addComp(i+1))
return xVals, modVals, compVals
def update(a):
params = read_sliders(sliders, type_sliders)
energies, modelValues, compValues = evaluate_model(params, model, kind)
plt.sca(plt1)
plt1.cla()
plt_plot_1 = make_plot(plt1, energies, modelValues, compValues, kind)
plt.draw()
if __name__ == "__main__":
if len(sys.argv) > 2:
ModelName = sys.argv[1]
kind = sys.argv[2]
elif len(sys.argv) > 1:
ModelName = sys.argv[1]
kind = "mo"
else:
ModelName = "bbodyrad+nthcomp"
kind = "mo"
# Make a larger grid for convolution models, and plot in a narrower range
xspec.AllModels.setEnergies("0.05 500. 5000 log")
plt1 = plt.axes([0.15, 0.45, 0.8, 0.5])
type_sliders, sliders, plt_sliders = [], [], []
params = []
xspec.Plot.device = "/null"
xspec.Plot.xAxis = "keV"
xspec.Plot.add = True
model = xspec.Model(ModelName)
i = Nadditive = 0
for cNumber, componentName in enumerate(model.componentNames):
if 'norm' == getattr(model, componentName).parameterNames[-1]:
Nadditive += 1
Tadditive = True
else:
Tadditive = False
for j, parameterName in enumerate(getattr(model, componentName).parameterNames):
i += 1
params.append(model(i).values[0])
plt_sliders.append(plt.axes([0.15, 0.36-i*0.03, 0.6, 0.02]))
if model(i).name == 'norm':
model(i).values = [1, 0.01, 1e-3, 1e-3, 1e3, 1e3]
if model(i).name == 'nH':
model(i).values = [1, 0.01, 1e-4, 1e-4, 1e2, 1e2]
if model(i).name == 'Tin':
model(i).values = [1, 0.01, 1e-4, 1e-4, 1e2, 1e2]
if model(i).values[2] > 0 and model(i).values[5] > 0:
type_sliders.append('log')
sliders.append(Slider(plt_sliders[-1],
model(i).name,
np.log10(model(i).values[3]),
np.log10(model(i).values[4]),
valinit=np.log10(model(i).values[0]),
valfmt='%7.5f {}'.format(model(i).unit),
color='C{}'.format(Nadditive) if Tadditive else 'gray'))
else:
type_sliders.append('lin')
sliders.append(Slider(plt_sliders[-1],
model(i).name,
model(i).values[3],
model(i).values[4],
valinit=model(i).values[0],
valfmt='%7.5f {}'.format(model(i+1).unit),
color='C{}'.format(Nadditive) if Tadditive else 'gray'))
sliders[-1].on_changed(update)
update(0)
plt.suptitle('Model: {}'.format(ModelName), y=0.99)
plt.show()