forked from paarthneekhara/byteNet-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_translator.py
144 lines (105 loc) · 4.38 KB
/
train_translator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import tensorflow as tf
import numpy as np
import argparse
import model_config
import data_loader
from ByteNet import model
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--learning_rate', type=float, default=0.001,
help='Learning Rate')
parser.add_argument('--batch_size', type=int, default=16,
help='Learning Rate')
parser.add_argument('--bucket_quant', type=int, default=25,
help='Learning Rate')
parser.add_argument('--max_epochs', type=int, default=1000,
help='Max Epochs')
parser.add_argument('--beta1', type=float, default=0.5,
help='Momentum for Adam Update')
parser.add_argument('--resume_model', type=str, default=None,
help='Pre-Trained Model Path, to resume from')
parser.add_argument('--source_file', type=str, default='Data/MachineTranslation/news-commentary-v11.de-en.de',
help='Source File')
parser.add_argument('--target_file', type=str, default='Data/MachineTranslation/news-commentary-v11.de-en.en',
help='Target File')
args = parser.parse_args()
data_loader_options = {
'model_type' : 'translation',
'source_file' : args.source_file,
'target_file' : args.target_file,
'bucket_quant' : args.bucket_quant,
}
dl = data_loader.Data_Loader(data_loader_options)
buckets, source_vocab, target_vocab, frequent_keys = dl.load_translation_data()
config = model_config.translator_config
model_options = {
'n_source_quant' : len(source_vocab),
'n_target_quant' : len(target_vocab),
'residual_channels' : config['residual_channels'],
'decoder_dilations' : config['decoder_dilations'],
'encoder_dilations' : config['encoder_dilations'],
'sample_size' : 10,
'decoder_filter_width' : config['decoder_filter_width'],
'encoder_filter_width' : config['encoder_filter_width'],
'batch_size' : args.batch_size,
'source_mask_chars' : [ source_vocab['padding'] ],
'target_mask_chars' : [ target_vocab['padding'] ]
}
last_saved_model_path = None
if args.resume_model:
last_saved_model_path = args.resume_model
print "Number Of Buckets", len(buckets)
for i in range(1, args.max_epochs):
cnt = 0
for _, key in frequent_keys:
cnt += 1
print "KEY", cnt, key
if key > 400:
continue
if len(buckets[key]) < args.batch_size:
print "BUCKET TOO SMALL", key
continue
sess = tf.InteractiveSession()
batch_no = 0
batch_size = args.batch_size
byte_net = model.Byte_net_model( model_options )
bn_tensors = byte_net.build_translation_model(sample_size = key)
adam = tf.train.AdamOptimizer(
args.learning_rate,
beta1 = args.beta1)
optim = adam.minimize(bn_tensors['loss'], var_list=bn_tensors['variables'])
train_writer = tf.train.SummaryWriter('logs/', sess.graph)
tf.initialize_all_variables().run()
saver = tf.train.Saver()
if last_saved_model_path:
saver.restore(sess, last_saved_model_path)
while (batch_no + 1) * batch_size < len(buckets[key]):
source, target = dl.get_batch_from_pairs(
buckets[key][batch_no * batch_size : (batch_no+1) * batch_size]
)
_, loss, prediction, summary, source_gradient, target_gradient = sess.run(
[optim, bn_tensors['loss'], bn_tensors['prediction'],
bn_tensors['merged_summary'], bn_tensors['source_gradient'], bn_tensors['target_gradient']],
feed_dict = {
bn_tensors['source_sentence'] : source,
bn_tensors['target_sentence'] : target,
})
train_writer.add_summary(summary, batch_no * (cnt + 1))
print "Loss", loss, batch_no, len(buckets[key])/batch_size, i, cnt, key
print "******"
print "Source ", dl.inidices_to_string(source[0], source_vocab)
print "---------"
print "Target ", dl.inidices_to_string(target[0], target_vocab)
print "----------"
print "Prediction ",dl.inidices_to_string(prediction[0:key], target_vocab)
print "******"
batch_no += 1
if batch_no % 1000 == 0:
save_path = saver.save(sess, "Data/Models/model_translation_epoch_{}_{}.ckpt".format(i, cnt))
last_saved_model_path = "Data/Models/model_translation_epoch_{}_{}.ckpt".format(i, cnt)
save_path = saver.save(sess, "Data/Models/model_translation_epoch_{}.ckpt".format(i))
last_saved_model_path = "Data/Models/model_translation_epoch_{}.ckpt".format(i)
tf.reset_default_graph()
sess.close()
if __name__ == '__main__':
main()