-
Notifications
You must be signed in to change notification settings - Fork 40
/
train.py
185 lines (160 loc) · 6.06 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Copyright 2020 Valentin Gabeur
# Copyright 2020 Samuel Albanie, Yang Liu and Arsha Nagrani
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Cross-modal architecture training.
Code based on the implementation of "Collaborative Experts":
https://github.com/albanie/collaborative-experts
"""
import argparse
import logging
import os
import random
import time
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model.model as module_arch
import numpy as np
from parse_config import ConfigParser
import torch
from trainer import Trainer
from utils import ranger
from utils.nlp_utils import create_tokenizer
from utils.util import compute_dims
import utils.visualizer as module_vis
logger = logging.getLogger(__name__)
def train(config):
"""Cross-modal architecture training."""
# Get the list of experts and their dimensions
expert_dims = compute_dims(config)
raw_input_dims = {}
for expert, expert_dic in expert_dims.items():
raw_input_dims[expert] = expert_dic["dim"]
# Set the random initial seeds
tic = time.time()
seed = config["seed"]
cross_seed = config.get("cross_seed", seed)
logger.debug("Setting experiment random seed to %d", seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
# Tokenizer to parse sentences into tokens
tokenizer = create_tokenizer(config["arch"]["args"]["txt_inp"])
# Create the datasets
logger.info("Preparing the dataloaders ...")
dataset_types = ["train_sets", "continuous_eval_sets", "final_eval_sets"]
data_loaders = {}
loaded_data = {}
for dataset_type in dataset_types:
training = dataset_type == "train_sets"
if not config.get(dataset_type, False):
continue
data_loaders[dataset_type] = []
for _, data_loader in enumerate(config[dataset_type]):
data_loaders[dataset_type].append(
getattr(module_data, data_loader["type"])(
**data_loader["args"],
raw_input_dims=raw_input_dims,
training=training,
tokenizer=tokenizer,
loaded_data=loaded_data,
cross_seed=cross_seed,
))
# Setup the cross-modal architecture
model = config.init(
name="arch",
module=module_arch,
expert_dims=expert_dims,
tokenizer=tokenizer,
)
loss = config.init(name="loss", module=module_loss)
metrics = [getattr(module_metric, met) for met in config["metrics"]]
trainable_params = filter(lambda p: p.requires_grad, model.parameters())
if config["optimizer"]["type"] == "Ranger":
optimizer = config.init("optimizer", ranger, trainable_params)
else:
optimizer = config.init("optimizer", torch.optim, trainable_params)
lr_scheduler = config.init("lr_scheduler", torch.optim.lr_scheduler,
optimizer)
if "warmup_iterations" in config["optimizer"]:
warmup_iterations = config["optimizer"]["warmup_iterations"]
else:
warmup_iterations = -1
visualizer = config.init(
name="visualizer",
module=module_vis,
exp_name=config.exper_name,
web_dirs=config.web_dirs,
)
trainer = Trainer(
model,
loss,
metrics,
optimizer,
config=config,
data_loaders=data_loaders,
lr_scheduler=lr_scheduler,
visualizer=visualizer,
skip_first_n_saves=config["trainer"].get("skip_first_n_saves", 0),
include_optim_in_ckpts=config["trainer"].get("include_optim_in_ckpts",
False),
expert_dims=expert_dims,
tokenizer=tokenizer,
warmup_iterations=warmup_iterations)
if not config.only_eval:
logger.info("Training ...")
trainer.train()
logger.info("Final evaluation ...")
trainer.evaluate()
duration = time.strftime("%Hh%Mm%Ss", time.gmtime(time.time() - tic))
logger.info("Script took %s", duration)
# Report the location of the "best" checkpoint of the final seeded run (here
# "best" corresponds to the model with the highest geometric mean over the
# R@1, R@5 and R@10 metrics when a validation set is used, or simply the final
# epoch of training for fixed-length schedules).
best_ckpt_path = config.save_dir / "trained_model.pth"
if os.path.exists(best_ckpt_path):
logger.info("The best performing ckpt can be found at %s",
str(best_ckpt_path))
def main_train(raw_args=None):
parser = argparse.ArgumentParser(description="PyTorch Template")
parser.add_argument("--config",
default=None,
type=str,
help="config file path (default: None)")
parser.add_argument(
"--resume",
default=None,
type=str,
help="path to the experiment dir to resume (default: None)")
parser.add_argument("--load_checkpoint",
default=None,
type=str,
help="path to the checkpoint to load (default: None)")
parser.add_argument("--device", type=str, help="indices of GPUs to enable")
parser.add_argument("--only_eval", action="store_true")
parser.add_argument("-v",
"--verbose",
help="increase output verbosity",
action="store_true")
args = parser.parse_args(raw_args)
args = ConfigParser(args)
msg = (
f"Expected the number of training epochs ({args['trainer']['epochs']})"
f"to exceed the save period ({args['trainer']['save_period']}), otherwise"
" no checkpoints will be saved.")
assert args["trainer"]["epochs"] >= args["trainer"]["save_period"], msg
train(config=args)
if __name__ == "__main__":
main_train()