-
Notifications
You must be signed in to change notification settings - Fork 385
/
Copy pathstyle.py
521 lines (430 loc) · 19 KB
/
style.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
"""
style.py - An implementation of "A Neural Algorithm of Artistic Style"
by L. Gatys, A. Ecker, and M. Bethge. http://arxiv.org/abs/1508.06576.
authors: Frank Liu - frank@frankzliu.com
Dylan Paiton - dpaiton@gmail.com
last modified: 10/06/2015
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the Frank Liu (fzliu) nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL Frank Liu (fzliu) BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
# system imports
import argparse
import logging
import os
import sys
import timeit
# library imports
import caffe
import numpy as np
import progressbar as pb
from scipy.fftpack import ifftn
from scipy.linalg.blas import sgemm
from scipy.misc import imsave
from scipy.optimize import minimize
from skimage import img_as_ubyte
from skimage.transform import rescale
# logging
LOG_FORMAT = "%(filename)s:%(funcName)s:%(asctime)s.%(msecs)03d -- %(message)s"
# numeric constants
INF = np.float32(np.inf)
STYLE_SCALE = 1.2
# weights for the individual models
# assume that corresponding layers' top blob matches its name
VGG19_WEIGHTS = {"content": {"conv4_2": 1},
"style": {"conv1_1": 0.2,
"conv2_1": 0.2,
"conv3_1": 0.2,
"conv4_1": 0.2,
"conv5_1": 0.2}}
VGG16_WEIGHTS = {"content": {"conv4_2": 1},
"style": {"conv1_1": 0.2,
"conv2_1": 0.2,
"conv3_1": 0.2,
"conv4_1": 0.2,
"conv5_1": 0.2}}
GOOGLENET_WEIGHTS = {"content": {"conv2/3x3": 2e-4,
"inception_3a/output": 1-2e-4},
"style": {"conv1/7x7_s2": 0.2,
"conv2/3x3": 0.2,
"inception_3a/output": 0.2,
"inception_4a/output": 0.2,
"inception_5a/output": 0.2}}
CAFFENET_WEIGHTS = {"content": {"conv4": 1},
"style": {"conv1": 0.2,
"conv2": 0.2,
"conv3": 0.2,
"conv4": 0.2,
"conv5": 0.2}}
# argparse
parser = argparse.ArgumentParser(description="Transfer the style of one image to another.",
usage="style.py -s <style_image> -c <content_image>")
parser.add_argument("-s", "--style-img", type=str, required=True, help="input style (art) image")
parser.add_argument("-c", "--content-img", type=str, required=True, help="input content image")
parser.add_argument("-g", "--gpu-id", default=0, type=int, required=False, help="GPU device number")
parser.add_argument("-m", "--model", default="vgg16", type=str, required=False, help="model to use")
parser.add_argument("-i", "--init", default="content", type=str, required=False, help="initialization strategy")
parser.add_argument("-r", "--ratio", default="1e4", type=str, required=False, help="style-to-content ratio")
parser.add_argument("-n", "--num-iters", default=512, type=int, required=False, help="L-BFGS iterations")
parser.add_argument("-l", "--length", default=512, type=float, required=False, help="maximum image length")
parser.add_argument("-v", "--verbose", action="store_true", required=False, help="print minimization outputs")
parser.add_argument("-o", "--output", default=None, required=False, help="output path")
def _compute_style_grad(F, G, G_style, layer):
"""
Computes style gradient and loss from activation features.
"""
# compute loss and gradient
(Fl, Gl) = (F[layer], G[layer])
c = Fl.shape[0]**-2 * Fl.shape[1]**-2
El = Gl - G_style[layer]
loss = c/4 * (El**2).sum()
grad = c * sgemm(1.0, El, Fl) * (Fl>0)
return loss, grad
def _compute_content_grad(F, F_content, layer):
"""
Computes content gradient and loss from activation features.
"""
# compute loss and gradient
Fl = F[layer]
El = Fl - F_content[layer]
loss = (El**2).sum() / 2
grad = El * (Fl>0)
return loss, grad
def _compute_reprs(net_in, net, layers_style, layers_content, gram_scale=1):
"""
Computes representation matrices for an image.
"""
# input data and forward pass
(repr_s, repr_c) = ({}, {})
net.blobs["data"].data[0] = net_in
net.forward()
# loop through combined set of layers
for layer in set(layers_style)|set(layers_content):
F = net.blobs[layer].data[0].copy()
F.shape = (F.shape[0], -1)
repr_c[layer] = F
if layer in layers_style:
repr_s[layer] = sgemm(gram_scale, F, F.T)
return repr_s, repr_c
def style_optfn(x, net, weights, layers, reprs, ratio):
"""
Style transfer optimization callback for scipy.optimize.minimize().
:param numpy.ndarray x:
Flattened data array.
:param caffe.Net net:
Network to use to generate gradients.
:param dict weights:
Weights to use in the network.
:param list layers:
Layers to use in the network.
:param tuple reprs:
Representation matrices packed in a tuple.
:param float ratio:
Style-to-content ratio.
"""
# update params
layers_style = weights["style"].keys()
layers_content = weights["content"].keys()
net_in = x.reshape(net.blobs["data"].data.shape[1:])
# compute representations
(G_style, F_content) = reprs
(G, F) = _compute_reprs(net_in, net, layers_style, layers_content)
# backprop by layer
loss = 0
net.blobs[layers[-1]].diff[:] = 0
for i, layer in enumerate(reversed(layers)):
next_layer = None if i == len(layers)-1 else layers[-i-2]
grad = net.blobs[layer].diff[0]
# style contribution
if layer in layers_style:
wl = weights["style"][layer]
(l, g) = _compute_style_grad(F, G, G_style, layer)
loss += wl * l * ratio
grad += wl * g.reshape(grad.shape) * ratio
# content contribution
if layer in layers_content:
wl = weights["content"][layer]
(l, g) = _compute_content_grad(F, F_content, layer)
loss += wl * l
grad += wl * g.reshape(grad.shape)
# compute gradient
net.backward(start=layer, end=next_layer)
if next_layer is None:
grad = net.blobs["data"].diff[0]
else:
grad = net.blobs[next_layer].diff[0]
# format gradient for minimize() function
grad = grad.flatten().astype(np.float64)
return loss, grad
class StyleTransfer(object):
"""
Style transfer class.
"""
def __init__(self, model_name, use_pbar=True):
"""
Initialize the model used for style transfer.
:param str model_name:
Model to use.
:param bool use_pbar:
Use progressbar flag.
"""
style_path = os.path.abspath(os.path.split(__file__)[0])
base_path = os.path.join(style_path, "models", model_name)
# vgg19
if model_name == "vgg19":
model_file = os.path.join(base_path, "VGG_ILSVRC_19_layers_deploy.prototxt")
pretrained_file = os.path.join(base_path, "VGG_ILSVRC_19_layers.caffemodel")
mean_file = os.path.join(base_path, "ilsvrc_2012_mean.npy")
weights = VGG19_WEIGHTS
# vgg16
elif model_name == "vgg16":
model_file = os.path.join(base_path, "VGG_ILSVRC_16_layers_deploy.prototxt")
pretrained_file = os.path.join(base_path, "VGG_ILSVRC_16_layers.caffemodel")
mean_file = os.path.join(base_path, "ilsvrc_2012_mean.npy")
weights = VGG16_WEIGHTS
# googlenet
elif model_name == "googlenet":
model_file = os.path.join(base_path, "deploy.prototxt")
pretrained_file = os.path.join(base_path, "bvlc_googlenet.caffemodel")
mean_file = os.path.join(base_path, "ilsvrc_2012_mean.npy")
weights = GOOGLENET_WEIGHTS
# caffenet
elif model_name == "caffenet":
model_file = os.path.join(base_path, "deploy.prototxt")
pretrained_file = os.path.join(base_path, "bvlc_reference_caffenet.caffemodel")
mean_file = os.path.join(base_path, "ilsvrc_2012_mean.npy")
weights = CAFFENET_WEIGHTS
else:
assert False, "model not available"
# add model and weights
self.load_model(model_file, pretrained_file, mean_file)
self.weights = weights.copy()
self.layers = []
for layer in self.net.blobs:
if layer in self.weights["style"] or layer in self.weights["content"]:
self.layers.append(layer)
self.use_pbar = use_pbar
# set the callback function
if self.use_pbar:
def callback(xk):
self.grad_iter += 1
try:
self.pbar.update(self.grad_iter)
except:
self.pbar.finished = True
if self._callback is not None:
net_in = xk.reshape(self.net.blobs["data"].data.shape[1:])
self._callback(self.transformer.deprocess("data", net_in))
else:
def callback(xk):
if self._callback is not None:
net_in = xk.reshape(self.net.blobs["data"].data.shape[1:])
self._callback(self.transformer.deprocess("data", net_in))
self.callback = callback
def load_model(self, model_file, pretrained_file, mean_file):
"""
Loads specified model from caffe install (see caffe docs).
:param str model_file:
Path to model protobuf.
:param str pretrained_file:
Path to pretrained caffe model.
:param str mean_file:
Path to mean file.
"""
# load net (supressing stderr output)
null_fds = os.open(os.devnull, os.O_RDWR)
out_orig = os.dup(2)
os.dup2(null_fds, 2)
net = caffe.Net(str(model_file), str(pretrained_file), caffe.TEST)
os.dup2(out_orig, 2)
os.close(null_fds)
# all models used are trained on imagenet data
transformer = caffe.io.Transformer({"data": net.blobs["data"].data.shape})
transformer.set_mean("data", np.load(mean_file).mean(1).mean(1))
transformer.set_channel_swap("data", (2,1,0))
transformer.set_transpose("data", (2,0,1))
transformer.set_raw_scale("data", 255)
# add net parameters
self.net = net
self.transformer = transformer
def get_generated(self):
"""
Saves the generated image (net input, after optimization).
:param str path:
Output path.
"""
data = self.net.blobs["data"].data
img_out = self.transformer.deprocess("data", data)
return img_out
def _rescale_net(self, img):
"""
Rescales the network to fit a particular image.
"""
# get new dimensions and rescale net + transformer
new_dims = (1, img.shape[2]) + img.shape[:2]
self.net.blobs["data"].reshape(*new_dims)
self.transformer.inputs["data"] = new_dims
def _make_noise_input(self, init):
"""
Creates an initial input (generated) image.
"""
# specify dimensions and create grid in Fourier domain
dims = tuple(self.net.blobs["data"].data.shape[2:]) + \
(self.net.blobs["data"].data.shape[1], )
grid = np.mgrid[0:dims[0], 0:dims[1]]
# create frequency representation for pink noise
Sf = (grid[0] - (dims[0]-1)/2.0) ** 2 + \
(grid[1] - (dims[1]-1)/2.0) ** 2
Sf[np.where(Sf == 0)] = 1
Sf = np.sqrt(Sf)
Sf = np.dstack((Sf**int(init),)*dims[2])
# apply ifft to create pink noise and normalize
ifft_kernel = np.cos(2*np.pi*np.random.randn(*dims)) + \
1j*np.sin(2*np.pi*np.random.randn(*dims))
img_noise = np.abs(ifftn(Sf * ifft_kernel))
img_noise -= img_noise.min()
img_noise /= img_noise.max()
# preprocess the pink noise image
x0 = self.transformer.preprocess("data", img_noise)
return x0
def _create_pbar(self, max_iter):
"""
Creates a progress bar.
"""
self.grad_iter = 0
self.pbar = pb.ProgressBar()
self.pbar.widgets = ["Optimizing: ", pb.Percentage(),
" ", pb.Bar(marker=pb.AnimatedMarker()),
" ", pb.ETA()]
self.pbar.maxval = max_iter
def transfer_style(self, img_style, img_content, length=512, ratio=1e5,
n_iter=512, init="-1", verbose=False, callback=None):
"""
Transfers the style of the artwork to the input image.
:param numpy.ndarray img_style:
A style image with the desired target style.
:param numpy.ndarray img_content:
A content image in floating point, RGB format.
:param function callback:
A callback function, which takes images at iterations.
"""
# assume that convnet input is square
orig_dim = min(self.net.blobs["data"].shape[2:])
# rescale the images
scale = max(length / float(max(img_style.shape[:2])),
orig_dim / float(min(img_style.shape[:2])))
img_style = rescale(img_style, STYLE_SCALE*scale)
scale = max(length / float(max(img_content.shape[:2])),
orig_dim / float(min(img_content.shape[:2])))
img_content = rescale(img_content, scale)
# compute style representations
self._rescale_net(img_style)
layers = self.weights["style"].keys()
net_in = self.transformer.preprocess("data", img_style)
gram_scale = float(img_content.size)/img_style.size
G_style = _compute_reprs(net_in, self.net, layers, [],
gram_scale=1)[0]
# compute content representations
self._rescale_net(img_content)
layers = self.weights["content"].keys()
net_in = self.transformer.preprocess("data", img_content)
F_content = _compute_reprs(net_in, self.net, [], layers)[1]
# generate initial net input
# "content" = content image, see kaishengtai/neuralart
if isinstance(init, np.ndarray):
img0 = self.transformer.preprocess("data", init)
elif init == "content":
img0 = self.transformer.preprocess("data", img_content)
elif init == "mixed":
img0 = 0.95*self.transformer.preprocess("data", img_content) + \
0.05*self.transformer.preprocess("data", img_style)
else:
img0 = self._make_noise_input(init)
# compute data bounds
data_min = -self.transformer.mean["data"][:,0,0]
data_max = data_min + self.transformer.raw_scale["data"]
data_bounds = [(data_min[0], data_max[0])] * int(img0.size / 3) + \
[(data_min[1], data_max[1])] * int(img0.size / 3) + \
[(data_min[2], data_max[2])] * int(img0.size / 3)
# optimization params
grad_method = "L-BFGS-B"
reprs = (G_style, F_content)
minfn_args = {
"args": (self.net, self.weights, self.layers, reprs, ratio),
"method": grad_method, "jac": True, "bounds": data_bounds,
"options": {"maxcor": 8, "maxiter": n_iter, "disp": verbose}
}
# optimize
self._callback = callback
minfn_args["callback"] = self.callback
if self.use_pbar and not verbose:
self._create_pbar(n_iter)
self.pbar.start()
res = minimize(style_optfn, img0.flatten(), **minfn_args).nit
self.pbar.finish()
else:
res = minimize(style_optfn, img0.flatten(), **minfn_args).nit
return res
def main(args):
"""
Entry point.
"""
# logging
level = logging.INFO if args.verbose else logging.DEBUG
logging.basicConfig(format=LOG_FORMAT, datefmt="%H:%M:%S", level=level)
logging.info("Starting style transfer.")
# set GPU/CPU mode
if args.gpu_id == -1:
caffe.set_mode_cpu()
logging.info("Running net on CPU.")
else:
caffe.set_device(args.gpu_id)
caffe.set_mode_gpu()
logging.info("Running net on GPU {0}.".format(args.gpu_id))
# load images
img_style = caffe.io.load_image(args.style_img)
img_content = caffe.io.load_image(args.content_img)
logging.info("Successfully loaded images.")
# artistic style class
use_pbar = not args.verbose
st = StyleTransfer(args.model.lower(), use_pbar=use_pbar)
logging.info("Successfully loaded model {0}.".format(args.model))
# perform style transfer
start = timeit.default_timer()
n_iters = st.transfer_style(img_style, img_content, length=args.length,
init=args.init, ratio=np.float(args.ratio),
n_iter=args.num_iters, verbose=args.verbose)
end = timeit.default_timer()
logging.info("Ran {0} iterations in {1:.0f}s.".format(n_iters, end-start))
img_out = st.get_generated()
# output path
if args.output is not None:
out_path = args.output
else:
out_path_fmt = (os.path.splitext(os.path.split(args.content_img)[1])[0],
os.path.splitext(os.path.split(args.style_img)[1])[0],
args.model, args.init, args.ratio, args.num_iters)
out_path = "outputs/{0}-{1}-{2}-{3}-{4}-{5}.jpg".format(*out_path_fmt)
# DONE!
imsave(out_path, img_as_ubyte(img_out))
logging.info("Output saved to {0}.".format(out_path))
if __name__ == "__main__":
args = parser.parse_args()
main(args)