-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathmain.py
130 lines (122 loc) · 5.72 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from __future__ import print_function
import os
import argparse
import shutil
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import models
from flops import *
# Training settings
parser = argparse.ArgumentParser(description='PyTorch Slimming CIFAR training')
parser.add_argument('--data_path', type=str, default='../data')
parser.add_argument('--num_classes', type=int, default=10)
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--epochs', type=int, default=160, metavar='N',
help='number of epochs to train (default: 160)')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
help='learning rate (default: 0.1)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--save', default='./checkpoint', type=str, metavar='PATH',
help='path to save prune model (default: current directory)')
parser.add_argument('--arch', default='ResNet56', type=str,
help='architecture to use')
parser.add_argument('--sr', type=float)
parser.add_argument('--threshold', type=float)
args = parser.parse_args()
print(args)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
if args.num_classes == 10:
train_set = datasets.CIFAR10(args.data_path, train=True)
test_set = datasets.CIFAR10(args.data_path, train=False)
else:
train_set = datasets.CIFAR100(args.data_path, train=True)
test_set = datasets.CIFAR100(args.data_path, train=False)
train_set.transform = transforms.Compose([
transforms.Pad(4),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
test_set.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=4)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=args.batch_size, shuffle=False, num_workers=4)
model = models.__dict__[args.arch](num_classes=args.num_classes)
model.cuda()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
history_score = np.zeros((args.epochs + 1, 3))
def train(epoch):
model.train()
global history_score
avg_loss = 0.
train_acc = 0.
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
avg_loss += loss.item()
pred = output.data.max(1, keepdim=True)[1]
train_acc += pred.eq(target.data.view_as(pred)).cpu().sum()
loss.backward()
###########learning the shape of filter with filter skeleton################
if args.sr and args.threshold:
model.update_skeleton(args.sr, args.threshold)
############################################################################
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{}]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset), loss.item()))
history_score[epoch][0] = avg_loss / len(train_loader)
history_score[epoch][1] = train_acc / float(len(train_loader))
def test():
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
data, target = data.cuda(), target.cuda()
output = model(data)
test_loss += F.cross_entropy(output, target, size_average=False).item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset)))
return correct / float(len(test_loader.dataset))
best_prec1 = 0.
for epoch in range(args.epochs):
if epoch in [args.epochs * 0.5, args.epochs * 0.75]:
for param_group in optimizer.param_groups:
param_group['lr'] *= 0.1
train(epoch)
prec1 = test()
history_score[epoch][2] = prec1
np.savetxt(os.path.join(args.save, 'train_record.txt'), history_score, fmt='%10.5f', delimiter=',')
if prec1 > best_prec1:
best_prec1 = prec1
torch.save(model.state_dict(), os.path.join(args.save, 'best.pth.tar'))
print("Best accuracy: " + str(best_prec1))
history_score[-1][0] = best_prec1
np.savetxt(os.path.join(args.save, 'train_record.txt'), history_score, fmt='%10.5f', delimiter=',')
##############pruning filter in filter without finetuning#################
if args.sr and args.threshold:
model.load_state_dict(torch.load(os.path.join(args.save, 'best.pth.tar')))
model.prune(args.threshold)
test()
print(model)
torch.save(model.state_dict(), os.path.join(args.save, 'pruned.pth.tar'))
print_model_param_nums(model)
count_model_param_flops(model)
#########################################################