-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathastriml_classes.py
657 lines (504 loc) · 27.6 KB
/
astriml_classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
import fitsio
from astropy.io import fits
from os import scandir
import logging
import time
from sklearn.externals import joblib
logger = logging.getLogger('astriluts')
def get_true_energy(evtnum, mcrunnum, simtable):
"""Match true energy between evtable and simtable
Returns an array of energies ordered like events in evtable"""
ntrig = evtnum.shape[0] # evtable["EVTNUM"].size
nsim = simtable["MCEVTNUM"].size
evt_mc = np.empty((ntrig, 2), dtype=np.int32)
evt_mc[:, 0] = evtnum # evtable["EVTNUM"]
evt_mc[:, 1] = mcrunnum # evtable["MCRUNNUM"]
sim_mc = np.empty((nsim, 2), dtype=np.int32)
sim_mc[:, 0] = simtable["MCEVTNUM"]
sim_mc[:, 1] = simtable["MCRUNNUM"]
e0 = simtable['E0']
idx = np.empty(ntrig, dtype=np.int32)
for i, row in enumerate(evt_mc):
idx[i] = np.where((sim_mc[:, 0] == row[0]) * (sim_mc[:, 1] == row[1]))[0]
energy = e0[idx]
return energy
class EventsRecoTrainer(object):
def __init__(self, params):
self.read_common_parameters(params)
if self.do_gh:
self.read_gh_sep_parameters(params)
if self.do_en:
self.read_enreco_parameters(params)
if self.do_dir:
self.read_dirreco_parameters(params)
def read_common_parameters(self, params):
try:
self.gamma_dir = params['gamma_dir']
self.proton_dir = params['proton_dir']
self.evtable_name = params['evtable']
self.file_ext = params['file_ext']
self.do_gh = params['do_gh_sep']
self.do_en = params['do_en_reco']
self.do_dir = params['do_dir_reco']
self.used_preprocessed_data = params['used_preprocessed_data']
except IOError:
raise IOError("Can't read commons in parfile, please check")
def read_gh_sep_parameters(self, params):
try:
self.gh_filters = params['gh_filter_cut']
self.gh_model_name = params['gh_model_name_sk']
# read features to train on
self.gh_num_features = params['gh_sk_num_par']
self.gh_features = list()
# then you can call feature_extractor with *features as args
for i in range(self.gh_num_features):
self.gh_features.append(params['gh_sk_par' + str(i + 1)])
# read params for rebinning
"""build list of dictionaries like this:
>>> featsToGroupBy = [{'feat': 'feat0', 'maxf': max(x[:, 0]), 'minf': min(x[:, 0]), 'col': 0, 'nbins': 10},
... {'feat': 'feat1', 'maxf': max(x[:, 1]), 'minf': min(x[:, 1]), 'col': 1, 'nbins': 5}]
"""
self.gh_sep_params = [{'maxf': params['hi_resz_sk'], 'minf': params['lo_resz_sk'],
'col': params['size_pos_sk'] - 1, 'nbins': params['n_resz_sk']},
{'maxf': params['hi_redist0_sk'], 'minf': params['lo_redist0_sk'],
'col': params['dist_pos_sk'] - 1, 'nbins': params['n_redist0_sk']},
{'maxf': 1., 'minf': 0, # for zenith rebinning it's fixed
'col': params['zenith_pos_sk'] - 1, 'nbins': params['n_rezd_sk']},
{'maxf': params['hi_reaz_sk'], 'minf': params['lo_reaz_sk'],
'col': params['azimuth_pos_sk'] - 1, 'nbins': params['n_reaz_sk']},
]
self.gh_rf_trees = params['gh_n_tree_sk']
self.gh_rf_max_features = params['gh_max_features_sk']
self.gh_rf_jobs = params['gh_n_jobs_sk']
self.gh_rf_oob_score = params['gh_oob_ratio_sk']
self.gh_rf_min_sample_split = params['gh_sample_split_sk']
except IOError:
raise IOError("Can't read gh separation stuff in parfile, please check")
def read_enreco_parameters(self, params):
try:
self.en_filters = params['en_filter_cut']
self.en_model_name = params['en_model_name_sk']
# read features to train on
self.en_num_features = params['en_sk_num_par']
self.en_features = list()
# then you can call feature_extractor with *features as args
for i in range(self.en_num_features):
self.en_features.append(params['en_sk_par' + str(i + 1)])
self.en_rf_trees = params['en_n_tree_sk']
self.en_rf_max_features = params['en_max_features_sk']
self.en_rf_jobs = params['en_n_jobs_sk']
self.en_rf_oob_score = params['en_oob_ratio_sk']
except IOError:
raise IOError("Can't read energy stuff in parfile, please check")
def read_dirreco_parameters(self, params):
try:
self.dir_filters = params['dir_filter_cut']
self.dir_model_name = params['dir_model_name_sk']
# read features to train on
self.dir_num_features = params['dir_sk_num_par']
self.dir_features = list()
# then you can call feature_extractor with *features as args
for i in range(self.dir_num_features):
self.dir_features.append(params['dir_sk_par' + str(i + 1)])
self.dir_rf_trees = params['dir_n_tree_sk']
self.dir_rf_max_features = params['dir_max_features_sk']
self.dir_rf_jobs = params['dir_n_jobs_sk']
self.dir_rf_oob_score = params['dir_oob_ratio_sk']
except IOError:
raise IOError("Can't read direction stuff in parfile, please check")
@staticmethod
def save_rf_model(model, filters, features_names, outfile):
dump_dict = {'model':model, 'filters':filters, 'feature_names':features_names}
try:
_ = joblib.dump(dump_dict, outfile + '.pkl', compress=3)
except IOError:
raise IOError('Could not save model info to disk, please check '
'dir writing permissions and space left on disk')
@staticmethod
def features_extractor(path, filters, evtable, file_ext, npar, reco_type='gh', *args, **kwargs):
"""Generates event list with npar number of features defined in
*args. To see what args can be, refer to astriluts_scikit.par
Since it yields objects, it has to be called with np.stack (and squeeze)
"""
# this imports allowed math functions
from numpy import log10, cos, sin, abs
evts = list()
true_energy = list()
dist = list()
for f in scandir(path):
if f.name.endswith(file_ext):
with fitsio.FITS(path + f.name) as hdu:
mask = hdu[evtable].where(filters)
# NEVER EVER CHANGE events VARIABLE NAME!!!
# the events variable defined here is used in eval function
# see astriluts.par
events = hdu[evtable][mask]
evts_feat = np.zeros(shape=(len(events), npar))
# evts_feat = combine_features(evts).swapaxes(0, 1)
for i in range(npar):
# par_name = 'gh_par' + str(i)
evts_feat[:, i] = eval(args[i])
if reco_type == 'gh':
# put cos(ZD) and AZ columns at the end of evts_feat
evts_feat = np.concatenate((evts_feat, np.cos(events["ZD"].reshape(-1, 1))), axis=1)
evts_feat = np.concatenate((evts_feat, events["AZ"].reshape(-1, 1)), axis=1)
elif reco_type == 'en':
sim_evt = hdu["SIM_EVTS"].read()
temp_true_energy = get_true_energy(events["EVTNUM"], events["MCRUNNUM"], sim_evt)
true_energy.append(temp_true_energy)
# yield evts_feat, true_energy
elif reco_type == 'dir':
temp_dist = events["DIST"]
dist.append(temp_dist)
evts.append(evts_feat)
# yield evts_feat, dist
# # call this with e = (np.stack(features_extractor))
# else:
# yield evts_feat
if reco_type == 'gh':
return np.vstack(evts)
elif reco_type == 'en':
return np.vstack(evts), np.hstack(true_energy)
elif reco_type == 'dir':
return np.vstack(evts), np.hstack(dist)
def _hyperBinning(self, x, featsToGroupBy: list):
"""
This function is for hyper binning with pandas.
It is intended to be used here in order to level number of events before training the classifier;
for more general purposes, it is the Histogram in utils/fitshistogram.py to be used.
This outputs the input array grouped in as many bins as present in the featsToGroupBy list.
This is a list of dictionaries, each dictionary is related to a feature (array column) to be binned.
Beware of bins generation: since np.linspace is used, if you want log bins
you have to make log of the input array column and pass log(max and min)!
Parameters
----------
x: input array to be binned
featsToGroupBy: list(dictionary)
list of dictionaries (see Examples for dict keys)
Output
----------
A pandas.core.groupby.DataFrameGroupBy object
Examples
--------
>>> featsToGroupBy = [{'feat': 'feat0', 'maxf': max(x[:, 0]), 'minf': min(x[:, 0]), 'col': 0, 'nbins': 10},
... {'feat': 'feat1', 'maxf': max(x[:, 1]), 'minf': min(x[:, 1]), 'col': 1, 'nbins': 5}]
where
'feat' is feature name (optional);
'maxf' and 'minf' are the range where to bin in
'col' is feature column number in the input array
'nbins' is the number of requested bins
"""
dfx = pd.DataFrame(x)
binning_list = list()
for i in range(len(featsToGroupBy)):
feat_dict = featsToGroupBy[i]
bins = np.linspace(feat_dict['minf'], feat_dict['maxf'], feat_dict['nbins']+1)
binning_list.append(pd.cut(dfx[feat_dict['col']], bins))
groups = dfx.groupby(binning_list)
return groups
@staticmethod
def _level_populations(group_signal, group_bgd, signal_evts, bgd_evts):
"""Equalize number of entries in each bin.
When doing signal - background separation, it is common to wrangle input data equalizing
the number of entries for gammas and hadron in all the requested hyper-bins,
before training the classifier.
This is different from the sklearn train_test_split in the sense that this level
the two populations based upon a previous binning over any feature requested.
Parameters
----------
group_signal: (multi dimension) histogram of signal population in pandas groups format
group_bgd: (multi dimension) histogram of background population in pandas groups format
signal_evts: array of signal events, to be equalized
bgd_evts: array of background events, to be equalized
Output
-----------
array of gammas and array of hadrons now of the same size
"""
# convert to pandas to use .drop()
# dataframe names follow the original use case gamma (dfg) vs hadrons (dfh)
dfg = pd.DataFrame(signal_evts)
dfh = pd.DataFrame(bgd_evts)
# have a unique set of keys in the histograms
s = set(group_signal.indices)
s.update(group_bgd.indices)
for key in s:
if key in group_signal.indices and key in group_bgd.indices:
# count exceeding records
exceeding = len(group_bgd.indices[key]) - len(group_signal.indices[key])
# drop records from dataset picking exceeding number of indices
# among those in group.indices[key]
if exceeding > 0:
logger.debug('bin: {} - g: {}\th: {}\t - '
'Removing {} protons'.format(key, len(group_signal.indices[key]),
len(group_bgd.indices[key]),
np.abs(exceeding)))
r_ind_list = list(np.random.choice(group_bgd.indices[key], size=exceeding, replace=False))
dfh.drop(r_ind_list, inplace=True)
elif exceeding < 0:
logger.debug('bin: {} - g: {}\th: {}\t - '
'Removing {} gammas'.format(key, len(group_signal.indices[key]),
len(group_bgd.indices[key]),
np.abs(exceeding)))
r_ind_list = list(np.random.choice(group_signal.indices[key], size=-exceeding, replace=False))
dfg.drop(r_ind_list, inplace=True)
elif key in group_bgd.indices and key not in group_signal.indices:
dfh.drop(group_bgd.indices[key], inplace=True)
elif key in group_signal.indices and key not in group_bgd.indices:
dfg.drop(group_signal.indices[key], inplace=True)
return np.array(dfg), np.array(dfh)
def setup_for_training(self, reco_type='gh', save=False):
if reco_type == 'gh':
gfeat = self.features_extractor(self.gamma_dir, self.gh_filters, self.evtable_name, self.file_ext,
self.gh_num_features, reco_type, *self.gh_features)
pfeat = self.features_extractor(self.proton_dir, self.gh_filters, self.evtable_name, self.file_ext,
self.gh_num_features, reco_type, *self.gh_features)
logger.info('Gamma events read: {}\nProtons events read: {}'.format(len(gfeat), len(pfeat)))
groupg = self._hyperBinning(gfeat, self.gh_sep_params)
groupp = self._hyperBinning(pfeat, self.gh_sep_params)
signal, bgd = self._level_populations(groupg, groupp, gfeat, pfeat)
num_gammas, num_protons = len(signal), len(bgd)
logger.info('Gamma events after filtering: {}\n'
'Proton events after filtering: {}'.format(num_gammas, num_protons))
# DEBUG: check for equal size
assert (num_gammas == num_protons)
# merge gamma and proton features
self.features = np.concatenate([signal, bgd])
# remove azimuth and zenith columns from features to train on
self.features = np.delete(self.features, np.s_[-2:], axis=1)
# merge labels
label_g = np.ones(num_gammas)
label_p = np.zeros(num_protons)
self.target = np.concatenate([label_g, label_p])
# save features and labels to disk
if save:
np.savez_compressed("features_and_labels_for_gh_training.npz", f=self.features, t=self.target)
elif reco_type == 'en':
self.features, self.target = self.features_extractor(self.gamma_dir, self.en_filters,
self.evtable_name,
self.file_ext, self.en_num_features, reco_type,
*self.en_features)
# self.features = np.vstack(temp_list[0])
# self.target = np.concatenate(temp_list[1])
if save:
np.savez_compressed("gammas_for_enreco_training.npz", f=self.features, t=self.target)
elif reco_type == 'dir':
self.features, self.target = self.features_extractor(self.gamma_dir, self.dir_filters,
self.evtable_name,
self.file_ext, self.dir_num_features, reco_type,
*self.dir_features)
# self.features = np.vstack(temp_list[0])
# self.target= np.hstack(temp_list[1])
if save:
np.savez_compressed("gammas_for_dirreco_training.npz", f=self.features, t=self.target)
def train(self, reco_type='gh'):
# self.setup_for_training(reco_type)
if reco_type == 'gh':
if self.used_preprocessed_data:
with np.load("features_and_labels_for_gh_training.npz") as data:
self.features = data['f']
self.target = data['t']
self.model = RandomForestClassifier(n_estimators=self.gh_rf_trees, max_features=self.gh_rf_max_features,
n_jobs=self.gh_rf_jobs, oob_score=self.gh_rf_oob_score,
random_state=42, criterion='entropy',
min_samples_split=self.gh_rf_min_sample_split)
logger.info('Start training RF classifier')
start = time.process_time()
self.model.fit(self.features, self.target)
logger.info('...done. Training RF Classifier took {:.2f} s'.format(time.process_time() - start))
try:
self.save_rf_model(self.model, self.gh_filters, self.gh_features, self.gh_model_name)
logger.info("Model saved to file: {}".format(self.gh_model_name + '.pkl'))
except IOError:
raise IOError("Could not save model to disk")
if reco_type == 'en':
self.model = RandomForestRegressor(n_estimators=self.en_rf_trees, max_features=self.en_rf_max_features,
n_jobs=self.en_rf_jobs, oob_score=self.en_rf_oob_score,
random_state=42)
if self.used_preprocessed_data:
with np.load("gammas_for_enreco_training.npz") as data:
self.features = data['f']
self.target = data['t']
logger.info('Start training RF regressor for energy')
start = time.process_time()
self.model.fit(self.features, self.target)
logger.info('...done. Training RF regressor for energy reconstruction took {:.2f} s'.\
format(time.process_time() - start))
try:
self.save_rf_model(self.model, self.en_filters, self.en_features, self.en_model_name)
logger.info("Model saved to file: {}".format(self.en_model_name + '.pkl'))
except IOError:
raise IOError("Could not save model to disk")
elif reco_type == 'dir':
self.model = RandomForestRegressor(n_estimators=self.dir_rf_trees, max_features=self.dir_rf_max_features,
n_jobs=self.dir_rf_jobs, oob_score=self.dir_rf_oob_score,
random_state=42)
if self.used_preprocessed_data:
with np.load("gammas_for_dirreco_training.npz") as data:
self.features = data['f']
self.target = data['t']
logger.info('Start training RF regressor for direction')
start = time.process_time()
self.model.fit(self.features, self.target)
logger.info('...done. Training RF regressor for direction reconstruction took {:.2f} s'.\
format(time.process_time() - start))
try:
self.save_rf_model(self.model, self.dir_filters, self.dir_features, self.dir_model_name)
logger.info("Model saved to file: {}".format(self.dir_model_name + '.pkl'))
except IOError:
raise IOError("Could not save model to disk")
def print_feature_importances(self, reco_type='gh'):
if reco_type == 'gh':
logger.info("gh separation features importances:")
for i in range(self.gh_num_features):
logger.info("{} importance -> {:.3f}".format(self.gh_features[i],
self.model.feature_importances_[i]))
logger.info("Out of bag (oob) score: {}".format(self.model.oob_score_))
elif reco_type == 'en':
logger.info("energy reconstruction features importances:")
for i in range(self.en_num_features):
logger.info("{} importance -> {:.3f}".format(self.en_features[i],
self.model.feature_importances_[i]))
logger.info("Out of bag (oob) score: {}".format(self.model.oob_score_))
elif reco_type == 'dir':
logger.info("direction reconstruction features importances:")
for i in range(self.dir_num_features):
logger.info("{} importance -> {:.3f}".format(self.dir_features[i],
self.model.feature_importances_[i]))
logger.info("Out of bag (oob) score: {}".format(self.model.oob_score_))
class EventRecoPredictor(object):
def __init__(self, params):
self.input_file = params['input_file']
self.evtable = params['evtable']
self.outfile = params['outfile']
self.is_mc = params['is_mc']
self.do_gh = params['do_gh_sep']
self.do_en = params['do_en_reco']
self.do_dir = params['do_dir_reco']
self.gh_model_file = params['gh_model_file']
self.en_model_file = params['en_model_file']
self.dir_model_file = params['dir_model_file']
self.head_tail = params['head_tail']
self.force_cuts = params['force_cuts']
# self.use_caldb = params['use_caldb']
# empty init
self.model = None
self.filters = str()
self.columns = list()
self.gammaness = None
self.en_reco = None
self.disp_reco = None
self.meanx = None
self.meany = None
self.delta = None
self.ht_discriminator = None
self.x_reco = None
self.y_reco = None
def load_rf_model(self, filename):
try:
model_info = joblib.load(filename)
self.model = model_info['model']
self.filters = model_info['filters']
self.columns = model_info['feature_names']
except IOError:
raise IOError('Could not read model info from file, please check')
def init_reco_params(self, nrows):
self.gammaness = np.full(nrows, None)
self.en_reco = np.full(nrows, None)
self.disp_reco = np.full(nrows, None)
self.x_reco = np.full(nrows, None)
self.y_reco = np.full(nrows, None)
@staticmethod
def read_nrows(infile, evtable):
with fitsio.FITS(infile) as hdu:
data = hdu[evtable].read()
return data.size
def features_extractor(self, infile, evtable, filters, npar, reco_type='gh', *args, **kwargs):
"""Generates event list with npar number of features defined in
*args. To see what args can be, refer to astriluts_scikit.par
Since it yields objects, it has to be called with np.stack (and squeeze)
"""
# this imports allowed math functions to be used in astriml.par
from numpy import log10, cos, sin, abs
with fitsio.FITS(infile) as hdu:
mask = hdu[evtable].where(filters)
# NEVER EVER CHANGE events VARIABLE NAME!!!
# the events variable defined here is used in eval function
# see astriluts.par
events = hdu[evtable][mask]
num_events = len(events)
evts_feat = np.zeros(shape=(num_events, npar))
for i in range(npar):
evts_feat[:, i] = eval(args[i])
self.features = evts_feat
if reco_type == 'dir':
self.meanx = events["MEANX"]
self.meany = events["MEANY"]
self.delta = events["DELTA"]
self.ht_discriminator = events[self.head_tail]
def predict(self, reco_type='gh'):
if reco_type == 'gh':
prob = self.model.predict_proba(self.features)
self.gammaness = prob[:, 1]
elif reco_type == 'en':
self.en_reco = self.model.predict(self.features)
else:
self.disp_reco = self.model.predict(self.features)
def srcpos_xy(self):
self.x_reco = self.meanx - self.disp_reco * np.cos(self.delta) * np.copysign(1, self.ht_discriminator)
self.y_reco = self.meany - self.disp_reco * np.cos(self.delta) * np.copysign(1, self.ht_discriminator)
def equalize_array_size(self):
largest_size = np.max([self.gammaness.size, self.en_reco.size, self.disp_reco.size])
if self.gammaness.size < largest_size:
fill = np.full(largest_size - self.gammaness.size, None)
self.gammaness = np.concatenate((self.gammaness, fill))
if self.en_reco.size < largest_size:
fill = np.full(largest_size - self.en_reco.size, None)
self.en_reco = np.concatenate((self.en_reco, fill))
if self.disp_reco.size < largest_size:
fill = np.full(largest_size - self.disp_reco.size, None)
self.disp_reco = np.concatenate((self.disp_reco, fill))
self.x_reco = np.concatenate((self.x_reco, fill))
self.y_reco = np.concatenate((self.y_reco, fill))
def write_lv1cfits(self):
"""This writes down the lv1c file in fits format
- extend EVENTS extensions from lv1b to lv1c;
- check if the input is MC or REAL;
- copy (if present) SIM_EVENTS and TELCONF extensions to lv1c
:return: True if success
"""
new_cols = list()
new_cols.append(fits.Column(name='GAMMANESS', format='E', unit="", array=self.gammaness))
new_cols.append(fits.Column(name='EST_EN', format='E', unit="[TeV]", array=self.en_reco))
new_cols.append(fits.Column(name='DISP', format='E', unit="[deg]", array=self.disp_reco))
new_cols.append(fits.Column(name='XDISP', format='E', unit="[deg]", array=self.x_reco))
new_cols.append(fits.Column(name='YDISP', format='E', unit="[deg]", array=self.y_reco))
new_cols_fit = fits.ColDefs(new_cols)
with fits.open(self.input_file) as lv1b:
events = lv1b['EVENTS'].data.copy()
evtable = fits.BinTableHDU.from_columns(events.columns + new_cols_fit)
evtable.name = self.evtable
# lv1c_dtypes = [('GAMMANESS', 'f4'), ('EST_EN', 'f4'), ('DISP', 'f4'), ('XDISP', 'f4'), ('YDISP', 'f4')]
# new_dt = np.dtype(events.dtype.descr + lv1c_dtypes)
# new_evts = np.full_like(events, events, dtype=new_dt)
#
# # now fill with new values
# new_evts['GAMMANESS'] = self.gammaness
# new_evts['EST_EN'] = self.en_reco
# new_evts['DISP'] = self.disp_reco
# new_evts['XDISP'] = self.x_reco
# new_evts['YDISP'] = self.y_reco
if self.is_mc:
sim_events = lv1b['SIM_EVTS'].data.copy()
simtable = fits.BinTableHDU.from_columns(sim_events.columns)
simtable.name = "SIM_EVTS"
telconf = lv1b['TELCONF'].data.copy()
teltable = fits.BinTableHDU.from_columns(telconf.columns)
teltable.name = "TELCONF"
hdulist = fits.HDUList([fits.PrimaryHDU(), evtable, simtable, teltable])
else:
hdulist = fits.HDUList([fits.PrimaryHDU(), evtable])
hdulist.writeto(self.outfile, overwrite=True)
# copy these to lv1c file