-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathmix_loader.py
executable file
·434 lines (341 loc) · 18.8 KB
/
mix_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
# A reimplemented version in public environments by Xiao Fu and Mu Hu
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from torch.utils.data import Dataset
import os
import cv2
from dataloader.utils import read_text_lines
from dataloader.file_io import *
import pickle
import json
from skimage import io, transform
import numpy as np
import glob
import tqdm
from PIL import Image
import torch
from imgaug import augmenters as iaa
class MixDataset(Dataset):
def __init__(self, data_dir,
load_pseudo_gt=False,
transform=None):
super(MixDataset, self).__init__()
self.data_dir = data_dir
self.transform = transform
self.img_size = (576, 768)
load_datasets = ['HyperSim', 'replica', '3d_ken_burns', 'simulation_disparity', 'objaverse']
self.samples = []
# 1. load hypersim dataset
if 'HyperSim' in load_datasets:
data_dir = os.path.join(self.data_dir, 'Hypersim', 'annotations', 'annos_all.json')
with open(data_dir) as f:
datas = json.load(f)['files']
for data in tqdm.tqdm(datas, desc='Loading HyperSim'):
meta_data = data['meta_data']
with open(os.path.join(self.data_dir, data['meta_data']), 'rb') as f: meta_data = pickle.load(f)
if meta_data['is_complete']['state'] == False:
if meta_data['is_complete']['is_crop'] == False:
continue
sample = dict()
sample['dataset'] = 'hypersim'
sample['rgb'] = os.path.join(self.data_dir, meta_data['rgbs']['rgb_tonemap'])
sample['depth'] = os.path.join(self.data_dir, meta_data['depth'])
sample['normal'] = os.path.join(self.data_dir, meta_data['normal'])
sample['cam_in'] = meta_data['cam_in']
sample['metric_scale'] = 1.0
# crop valid region in incomplete image
sample['is_complete'] = meta_data['is_complete']['state']
if sample['is_complete'] == False:
sample['crop_size'] = meta_data['is_complete']['crop_size']
# data augmentation args
sample['RandomHorizontalFlip'] = 0.4
sample['distortion_prob'] = 0.05
sample['to_gray_prob'] = 0.1
self.samples.append(sample)
# 2. load replica dataset
if 'replica' in load_datasets:
data_dir = os.path.join(self.data_dir, 'replica', 'annotations', 'annos_all.json')
with open(data_dir) as f:
datas = json.load(f)['files']
for data in tqdm.tqdm(datas, desc='Loading Replica'):
meta_data = data['meta_data']
with open(os.path.join(self.data_dir, data['meta_data']), 'rb') as f: meta_data = pickle.load(f)
sample = dict()
sample['dataset'] = 'replica'
sample['rgb'] = os.path.join(self.data_dir, meta_data['rgb'])
sample['depth'] = os.path.join(self.data_dir, meta_data['depth'])
sample['normal'] = os.path.join(self.data_dir, meta_data['normal'])
sample['cam_in'] = meta_data['cam_in']
sample['metric_scale'] = 512.0
threshold = 50
if meta_data['is_complete'] == False:
if meta_data['invalid_num'] > threshold:
continue
# data augmentation args
sample['RandomHorizontalFlip'] = 0.4
sample['distortion_prob'] = 0.05
sample['to_gray_prob'] = 0.1
self.samples.append(sample)
# 3. load 3d_ken_burns dataset
if '3d_ken_burns' in load_datasets:
data_dir = os.path.join(self.data_dir, '3d_ken_burns', 'annotations', 'annos_all.json')
with open(data_dir) as f:
datas = json.load(f)['files']
for data in tqdm.tqdm(datas, desc='Loading 3d_ken_burns'):
meta_data = data['meta_data']
with open(os.path.join(self.data_dir, data['meta_data']), 'rb') as f: meta_data = pickle.load(f)
sample = dict()
sample['dataset'] = '3d_ken_burns'
sample['rgb_l'] = os.path.join(self.data_dir, meta_data['rgb'])
sample['rgb_r'] = os.path.join(self.data_dir, meta_data['rgb_right'])
sample['depth_l'] = os.path.join(self.data_dir, meta_data['depth'])
sample['depth_r'] = os.path.join(self.data_dir, meta_data['depth_right'])
sample['normal_l'] = os.path.join(self.data_dir, meta_data['normal'])
sample['normal_r'] = os.path.join(self.data_dir, meta_data['normal_right'])
sample['cam_in'] = meta_data['cam_in']
sample['metric_scale'] = 100.0
# data augmentation args
sample['RandomHorizontalFlip'] = 0.4
sample['distortion_prob'] = 0.1
sample['to_gray_prob'] = 0.2
self.samples.append(sample)
# 4. load simulation_disparity dataset
if 'simulation_disparity' in load_datasets:
data_dir = os.path.join(self.data_dir, 'simulation_disparity', 'annos_all.json')
with open(data_dir) as f:
datas = json.load(f)['files']
for data in tqdm.tqdm(datas, desc='Loading simulation_disparity'):
meta_data = data['meta_data']
sample = dict()
sample['dataset'] = 'simulation_disparity'
sample['rgb'] = os.path.join(self.data_dir, meta_data['rgb'])
sample['depth'] = os.path.join(self.data_dir, meta_data['depth'])
sample['normal'] = os.path.join(self.data_dir, meta_data['normal'])
sample['cam_in'] = meta_data['cam_in']
sample['metric_scale'] = 128.0
# data augmentation args
sample['RandomHorizontalFlip'] = 0.4
sample['distortion_prob'] = 0.1
sample['to_gray_prob'] = 0.2
self.samples.append(sample)
# 5. load objaverse dataset
if 'objaverse' in load_datasets:
data_dir = os.path.join(self.data_dir, 'objaverse', 'annos_all.json')
with open(data_dir) as f:
datas = json.load(f)
for data in tqdm.tqdm(datas, desc='Loading objaverse'):
sample = dict()
sample['dataset'] = 'objaverse'
sample['meta_dir'] = os.path.join(self.data_dir, 'objaverse', data)
# data augmentation args
sample['RandomHorizontalFlip'] = 0.4
sample['distortion_prob'] = 0.05
sample['to_gray_prob'] = 0.1
self.samples.append(sample)
def __getitem__(self, index):
sample = {}
sample_path = self.samples[index]
H, W = self.img_size
# ----------------- Load Different Datasets -----------------
# HyperSim
if sample_path['dataset'] == 'hypersim':
sample['domain'] = torch.Tensor([1., 0., 0.]) # indoor
sample['rgb'] = read_img(sample_path['rgb']) # [H, W, 3]
sample['depth'], sample['normal'] = read_depth_normal_hypersim(sample_path['depth'], sample_path['normal'], sample_path['cam_in'], sample_path['metric_scale'])
H_ori, W_ori = sample['rgb'].shape[:2]
# crop valid region in incomplete image
if sample_path['is_complete'] == False:
H_start, H_end, W_start, W_end = sample_path['crop_size']
sample['rgb'] = sample['rgb'][H_start:H_end, W_start:W_end]
sample['depth'] = sample['depth'][H_start:H_end, W_start:W_end]
sample['normal'] = sample['normal'][H_start:H_end, W_start:W_end]
assert np.isnan(sample['depth']).sum() == 0
up_scale = 1.2
H_ori, W_ori = sample['rgb'].shape[:2]
up_size = (int(W_ori * up_scale), int(H_ori * up_scale))
sample['rgb'] = cv2.resize(sample['rgb'], up_size, interpolation = cv2.INTER_CUBIC)
sample['depth'] = cv2.resize(sample['depth'], up_size, interpolation = cv2.INTER_NEAREST)
sample['depth'] /= up_scale
sample['normal'] = cv2.resize(sample['normal'], up_size, interpolation = cv2.INTER_NEAREST)
H_ori, W_ori = sample['rgb'].shape[:2]
assert H_ori >= H, W_ori >= W
# replica
if sample_path['dataset'] == 'replica':
sample['domain'] = torch.Tensor([1., 0., 0.]) # indoor
sample['rgb'] = read_img(sample_path['rgb']) # [H, W, 3]
sample['depth'], sample['normal'], invalid_mask = read_depth_normal_replica(sample_path['depth'], sample_path['normal'], sample_path['cam_in'], sample_path['metric_scale'])
up_scale = 1.5
H_ori, W_ori = sample['rgb'].shape[:2]
up_size = (int(W_ori * up_scale), int(H_ori * up_scale))
sample['rgb'] = cv2.resize(sample['rgb'], up_size, interpolation = cv2.INTER_CUBIC)
sample['depth'] = cv2.resize(sample['depth'], up_size, interpolation = cv2.INTER_NEAREST)
sample['depth'] /= up_scale
sample['normal'] = cv2.resize(sample['normal'], up_size, interpolation = cv2.INTER_NEAREST)
H_ori, W_ori = sample['rgb'].shape[:2]
# 3d ken burns
if sample_path['dataset'] == '3d_ken_burns':
sample['domain'] = torch.Tensor([0., 1., 0.]) # outdoor
if np.random.random() < 0.5:
rgb_path = sample_path['rgb_l']
depth_path = sample_path['depth_l']
normal_path = sample_path['normal_l']
else:
rgb_path = sample_path['rgb_r']
depth_path = sample_path['depth_r']
normal_path = sample_path['normal_r']
sample['rgb'] = read_img(rgb_path) # [H, W, 3]
sample['depth'], sample['normal'], invalid_mask = read_depth_normal_kenburns(depth_path, normal_path, sample_path['cam_in'], sample_path['metric_scale'])
up_scale = 1.5
H_ori, W_ori = sample['rgb'].shape[:2]
up_size = (int(W_ori * up_scale), int(H_ori * up_scale))
sample['rgb'] = cv2.resize(sample['rgb'], up_size, interpolation = cv2.INTER_CUBIC)
sample['depth'] = cv2.resize(sample['depth'], up_size, interpolation = cv2.INTER_NEAREST)
sample['depth'] /= up_scale
sample['normal'] = cv2.resize(sample['normal'], up_size, interpolation = cv2.INTER_NEAREST)
H_ori, W_ori = sample['rgb'].shape[:2]
# simulation_disparity
if sample_path['dataset'] == 'simulation_disparity':
sample['domain'] = torch.Tensor([0., 1., 0.]) # outdoor
sample['rgb'] = read_img(sample_path['rgb']) # [H, W, 3]
sample['depth'], sample['normal'] = read_depth_normal_simulation_disparity(sample_path['depth'], sample_path['normal'], sample_path['cam_in'], sample_path['metric_scale'])
up_scale = 0.4
H_ori, W_ori = sample['rgb'].shape[:2]
up_size = (int(W_ori * up_scale), int(H_ori * up_scale))
sample['rgb'] = cv2.resize(sample['rgb'], up_size, interpolation = cv2.INTER_CUBIC)
sample['depth'] = cv2.resize(sample['depth'], up_size, interpolation = cv2.INTER_NEAREST)
sample['depth'] /= up_scale
sample['normal'] = cv2.resize(sample['normal'], up_size, interpolation = cv2.INTER_NEAREST)
H_ori, W_ori = sample['rgb'].shape[:2]
# objaverse
if sample_path['dataset'] == 'objaverse':
sample['domain'] = torch.Tensor([0., 0., 1.]) # object
views = ['00000', '00010', '00020', '00030']
idx = np.random.randint(0,4)
view = views[idx]
# downloading bug
try:
json_file = os.path.join(sample_path['meta_dir'], view, view+'.json')
c2w = read_camera_matrix_single(json_file)
except:
with open(f'fail_objaverse.txt', 'a+') as f:
f.write(sample_path['meta_dir'])
f.write('\n')
if idx == 0:
idx = 3
else:
idx = idx - 1
view = views[idx]
json_file = os.path.join(sample_path['meta_dir'], view, view+'.json')
c2w = read_camera_matrix_single(json_file)
cam_dis = np.linalg.norm(c2w[:3, 3:], 2)
near = 0.867
near_distance = cam_dis - near
normald_path = os.path.join(sample_path['meta_dir'], view, view+'_nd.exr')
normald = cv2.imread(normald_path, cv2.IMREAD_UNCHANGED).astype(np.float32)
depth = normald[...,3:]
depth[depth<near_distance] = 0
depth[depth==0] = 5.
depth = depth[:,:,0]
mask_depth = depth==5.
normal = normald[...,:3]
normal_norm = (np.linalg.norm(normal, 2, axis=-1, keepdims= True))
normal = normal / normal_norm
normal = np.nan_to_num(normal,nan=-1.)
world_normal = unity2blender(normal)
normal = blender2midas(world_normal@ (c2w[:3,:3]))
normal = normal / (np.linalg.norm(normal, 2, axis=-1, keepdims= True))
mask_normal = np.asarray(np.clip((normal+1.)/2. * 255, 0, 255), np.uint8)[...,-1] >= 127
normal[:,:,0] *= -1.
rgb_path = os.path.join(sample_path['meta_dir'], view, view+'.png')
rgbd = read_img(rgb_path)
rgb = rgbd[:,:,:3]
alpha = rgbd[:,:,3][...,None]/255.
bg_color = np.array([255.,255.,255.])
rgb = (rgb * alpha + bg_color*(1-alpha)).astype(np.uint8)
mask_rgb = rgbd[:,:,3]==0
mask = mask_depth | mask_normal | mask_rgb
depth[mask] = 5.
normal[mask] = np.array([0.,0.,-1.])
rgb[mask] = 255
sample['depth'] = depth
sample['normal'] = normal
sample['rgb'] = rgb
up_scale = 1.125
H_ori, W_ori = sample['rgb'].shape[:2]
up_size = (int(W_ori * up_scale), int(H_ori * up_scale))
sample['rgb'] = cv2.resize(sample['rgb'], up_size, interpolation = cv2.INTER_CUBIC)
sample['depth'] = cv2.resize(sample['depth'], up_size, interpolation = cv2.INTER_NEAREST)
sample['depth'] /= up_scale
sample['normal'] = cv2.resize(sample['normal'], up_size, interpolation = cv2.INTER_NEAREST)
rgb_padding = np.full((576,96,3), 255, dtype=np.uint8)
sample['rgb'] = np.concatenate((rgb_padding, sample['rgb'], rgb_padding), axis=1)
depth_padding = np.full((576,96), sample['depth'][0,0], dtype=np.float32)
sample['depth'] = np.concatenate((depth_padding, sample['depth'], depth_padding), axis=1)
normal_temp = np.zeros((576,96,3), dtype=np.float32)
normal_temp[:,:,-1] = -1.
sample['normal'] = np.concatenate((normal_temp, sample['normal'], normal_temp), axis=1)
H_ori, W_ori = sample['rgb'].shape[:2]
# ----------------- Data Augmentation -----------------
# 1. Random Crop
if H_ori >= H and W_ori >= W:
H_start, W_start = np.random.randint(0, H_ori-H+1), np.random.randint(0, W_ori-W+1)
sample['rgb'] = sample['rgb'][H_start:H_start + H, W_start:W_start + W]
sample['depth'] = sample['depth'][H_start:H_start + H, W_start:W_start + W]
sample['normal'] = sample['normal'][H_start:H_start + H, W_start:W_start + W]
# 2. Random Horizontal Flip
if np.random.random() < sample_path['RandomHorizontalFlip']:
sample['rgb'] = np.copy(np.fliplr(sample['rgb']))
sample['depth'] = np.copy(np.fliplr(sample['depth']))
sample['normal'] = np.copy(np.fliplr(sample['normal']))
sample['normal'][:,:,0] *= -1.
# 3. Photometric Distortion
to_gray_prob = sample_path['to_gray_prob']
distortion_prob = sample_path['distortion_prob']
brightness_beta = np.random.uniform(-32, 32)
contrast_alpha = np.random.uniform(0.5, 1.5)
saturate_alpha = np.random.uniform(0.5, 1.5)
rand_hue = np.random.randint(-18, 18)
brightness_do = np.random.random() < distortion_prob
contrast_do = np.random.random() < distortion_prob
saturate_do = np.random.random() < distortion_prob
rand_hue_do = np.random.random() < distortion_prob
# mode == 0 --> do random contrast first
# mode == 1 --> do random contrast last
mode = 0 if np.random.random() > 0.5 else 1
if np.random.random() < to_gray_prob:
sample['rgb'] = iaa.Grayscale(alpha=(0.8, 1.0))(image=sample['rgb'])
else:
# random brightness
if brightness_do:
alpha, beta = 1.0, brightness_beta
sample['rgb'] = np.clip((sample['rgb'].astype(np.float32) * alpha + beta), 0, 255).astype(np.uint8)
if mode == 0:
if contrast_do:
alpha, beta = contrast_alpha, 0.0
sample['rgb'] = np.clip((sample['rgb'].astype(np.float32) * alpha + beta), 0, 255).astype(np.uint8)
# random saturation
if saturate_do:
img = cv2.cvtColor(sample['rgb'][:,:,::-1], cv2.COLOR_BGR2HSV)
alpha, beta = saturate_alpha, 0.0
img[:,:,1] = np.clip((img[:,:,1].astype(np.float32) * alpha + beta), 0, 255).astype(np.uint8)
sample['rgb'] = cv2.cvtColor(img, cv2.COLOR_HSV2BGR)[:,:,::-1]
# random hue
if rand_hue_do:
img = cv2.cvtColor(sample['rgb'][:,:,::-1], cv2.COLOR_BGR2HSV)
img[:, :, 0] = (img[:, :, 0].astype(int) + rand_hue) % 180
sample['rgb'] = cv2.cvtColor(img, cv2.COLOR_HSV2BGR)[:,:,::-1]
# random contrast
if mode == 1:
if contrast_do:
alpha, beta = contrast_alpha, 0.0
sample['rgb'] = np.clip((sample['rgb'].astype(np.float32) * alpha + beta), 0, 255).astype(np.uint8)
# 4. To Tensor
sample['rgb'] = (torch.from_numpy(np.transpose(sample['rgb'].copy(), (2, 0, 1))) / 255.) * 2.0 - 1.0 # [3, H, W]
sample['depth'] = torch.from_numpy(sample['depth'][None].copy()) # [1, H, W]
sample['normal'] = torch.from_numpy(np.transpose(sample['normal'].copy(), (2, 0, 1))) # [3, H, W]
return sample
def __len__(self):
return len(self.samples)
def get_img_size(self):
return self.img_size