-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_NTF.py
179 lines (141 loc) · 5.45 KB
/
train_NTF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
"""
CUDA_VISIBLE_DEVICES=8 python train_MFNeRF_cvpr23.py cfgs/CDF/train.yaml cfgs/data/train/custom.yaml
CUDA_VISIBLE_DEVICES=5 python train_MFNeRF_cvpr23.py cfgs/CDF/train.yaml cfgs/data/train/custom.yaml
FFG-benchmarks
Copyright (c) 2021-present NAVER Corp.
MIT license
"""
from email.policy import default
import json
import argparse
import numpy as np
import torch
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.utils.data.distributed
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
from torchvision import transforms
from base.utils import Logger, TBDiskWriter, setup_train_config
from base.modules import weights_init
from NTFmodel.dataset_NeRFMS import NeRFTrainDataset
from NTFmodel.models import Discriminator, AuxClassifier
from NTFmodel.models import NTFGenerator
TRANSFORM = transforms.Compose([
transforms.Resize((128, 128)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
def setup_train_dset(cfg):
cfg.dset.train.chars = json.load(open(cfg.dset.train.chars))
if "data_dir" in cfg.dset.val:
cfg.dset.val = {None: cfg.dset.val}
for key in cfg.dset.val:
chars = cfg.dset.val[key].chars
if chars is not None:
cfg.dset.val[key].chars = json.load(open(chars))
return cfg
def build_trainer(args, cfg, gpu=0):
torch.cuda.set_device(gpu)
logger_path = cfg.trainer.work_dir / "log.log"
logger = Logger.get(file_path=logger_path, level="info", colorize=True)
cudnn.benchmark = True
tb_path = cfg.trainer.work_dir / "events"
image_path = cfg.trainer.work_dir / "images"
image_scale = 0.5
writer = TBDiskWriter(tb_path, image_path, scale=image_scale)
logger.info(f"[{gpu}] Get dataset ...")
# print(cfg.dset.train)
trn_dset = NeRFTrainDataset(
transform=TRANSFORM,
**cfg.dset.train
)
if cfg.use_ddp:
sampler = DistributedSampler(trn_dset,
num_replicas=args.world_size,
rank=cfg.trainer.rank)
batch_size = cfg.dset.loader.batch_size // args.world_size
batch_size = batch_size if batch_size else 1
cfg.dset.loader.num_workers = 0 # for validation loaders
trn_loader = DataLoader(
trn_dset,
collate_fn=trn_dset.collate_fn,
sampler=sampler,
shuffle=False,
num_workers=0,
batch_size=batch_size
)
else:
trn_loader = DataLoader(
trn_dset,
collate_fn=trn_dset.collate_fn,
shuffle=True,
**cfg.dset.loader
)
logger.info(f"[{gpu}] Build model ...")
# g_kwargs = cfg.get("gen", {})
gen = NTFGenerator() # cvpr2023 model: NTF-Loc
gen.cuda()
gen.apply(weights_init("kaiming"))
disc = Discriminator(trn_dset.n_fonts, trn_dset.n_chars)
disc.cuda()
disc.apply(weights_init("kaiming"))
# aux_clf = AuxClassifier(in_shape=128,
# num_c=trn_dset.n_chars,
# num_s=trn_dset.n_fonts)
# aux_clf.cuda()
# aux_clf.apply(weights_init("kaiming"))
g_optim = optim.Adam(gen.parameters(), lr=cfg.g_lr, betas=cfg.adam_betas)
d_optim = optim.Adam(disc.parameters(), lr=cfg.d_lr, betas=cfg.adam_betas)
# ac_optim = optim.Adam(aux_clf.parameters(), lr=cfg.ac_lr, betas=cfg.adam_betas)
if cfg.use_ddp:
gen = DDP(gen, device_ids=[gpu])
disc = DDP(disc, device_ids=[gpu])
# aux_clf = DDP(aux_clf, device_ids=[gpu])
from NTFmodel.NTFtrainer import NTFTrainer
trainer = NTFTrainer(gen, disc, g_optim, d_optim,
writer, logger, cfg.trainer, cfg.use_ddp)
return trn_loader, trainer
def cleanup():
dist.destroy_process_group()
def train_ddp(gpu, args, cfg):
cfg.trainer.rank = args.nr*args.gpus_per_node + gpu
dist.init_process_group(
backend="nccl",
init_method="tcp://127.0.0.1:" + str(args.port),
world_size=args.world_size,
rank=cfg.trainer.rank,
)
trn_loader, trainer = build_trainer(args, cfg, gpu)
trainer.train(trn_loader, cfg.max_iter)
cleanup()
def train_single(args, cfg):
cfg.trainer.rank = 0
trn_loader, trainer = build_trainer(args, cfg)
trainer.train(trn_loader, cfg.max_iter)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("config_paths", nargs="+", help="path/to/config.yaml")
parser.add_argument("-n", "--nodes", type=int, default=1, help="number of nodes")
parser.add_argument("-g", "--gpus_per_node", type=int, default=1, help="number of gpus per node")
parser.add_argument("-nr", "--nr", type=int, default=0, help="ranking within the nodes")
parser.add_argument("-p", "--port", type=int, default=12781, help="port for DDP")
parser.add_argument("--verbose", type=bool, default=True)
args, left_argv = parser.parse_known_args()
args.world_size = args.gpus_per_node * args.nodes
cfg = setup_train_config(args, left_argv)
cfg = setup_train_dset(cfg)
np.random.seed(cfg.seed)
torch.manual_seed(cfg.seed)
if cfg.use_ddp:
mp.spawn(train_ddp,
nprocs=args.gpus_per_node,
args=(args, cfg)
)
else:
train_single(args, cfg)
if __name__ == "__main__":
main()