-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpredict-die.py
49 lines (42 loc) · 1.64 KB
/
predict-die.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import tensorflow as tf
import numpy as np
from numpy import genfromtxt
from sklearn import datasets
from sklearn.cross_validation import train_test_split
import sklearn
def buildDataFromIris():
iris = datasets.load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data,iris.target,test_size=.33,random_state=42)
f=open('cs-training.csv','w')
for i,j in enumerate(X_train):
k=np.append(np.array(y_train[i]),j)
f.write(",".join([str(s) for s in k]) + '\n')
f.close()
f=open('cs-testing.csv','w')
for i,j in enumerate(X_test):
k=np.append(np.array(y_test[i]),j)
f.write(",".join([str(s) for s in k]) + '\n')
f.close()
def convertOneHot(data):
y=np.array([int(i[0]) for i in data])
y_onehot=[0]*len(y)
for i,j in enumerate(y):
y_onehot[i]=[0]*(y.max()+1)
y_onehot[i][j]=1
return (y,y_onehot)
buildDataFromIris()
data = genfromtxt('cs-training.csv',delimiter=',')
test_data = genfromtxt('cs-testing.csv',delimiter=',')
#x_train = np.array([i[1::] for i in data])
#y_train,y_train_onehot = convertOneHot(data)
#x_test=np.array([i[1::] for i in test_data])
#y_test,y_test_onehot = convertOneHot(test_data)
#A=data.shape[1]-1
#B=len(y_train_onehot[0])
#tf_in = tf.placeholder('float',[None,A])
#tf_weight = tf.Variable(tf.zeros([A,B]))
#tf_bias = tf.Variable(tf.zeros([B]))
#tf_softmax= tf.nn.softmax(tf.nn.softmax(tf.matmul(tf_in,tf_weight) + tf_bias))
#tf_softmax_correct = tf.placeholder('float', [None,B])
#tf_cross_entropy = -tf.reduce_sum(tf_softmax_correct*tf.log(tf_softmax))
#tf_train_step = tf.train.GradientDescentOptimizer(0.01).minimize(tf_cross_entropy)