forked from facebookresearch/body2hands
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_gan.py
309 lines (255 loc) · 12.3 KB
/
train_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# Copyright (c) Facebook, Inc. and its affiliates.
import argparse
import numpy as np
import os
import torch
from torch import nn
from torch.autograd import Variable
import torchvision
import utils.modelZoo as modelZoo
from utils.load_utils import *
DATA_PATHS = {
#'video_data/Oliver/train/':1,
#'video_data/Chemistry/train/':2,
'video_data/Seth/train/':5,
#'video_data/Conan/train/':6,
}
#######################################################
## main training function
#######################################################
def main(args):
## variables
learning_rate = args.learning_rate
pipeline = args.pipeline
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
feature_in_dim, feature_out_dim = FEATURE_MAP[pipeline]
feats = pipeline.split('2')
in_feat, out_feat = feats[0], feats[1]
currBestLoss = 1e3
rng = np.random.RandomState(23456)
torch.manual_seed(23456)
torch.cuda.manual_seed(23456)
## DONE variables
## set up generator model
args.model = 'regressor_fcn_bn_32'
generator = getattr(modelZoo, args.model)()
generator.build_net(feature_in_dim, feature_out_dim, require_image=args.require_image)
generator.cuda()
reg_criterion = nn.L1Loss()
g_optimizer = torch.optim.Adam(generator.parameters(), lr=learning_rate, weight_decay=1e-5)
generator.train()
## set up discriminator model
args.model = 'regressor_fcn_bn_discriminator'
discriminator = getattr(modelZoo, args.model)()
discriminator.build_net(feature_out_dim)
discriminator.cuda()
gan_criterion = nn.MSELoss()
d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=learning_rate, weight_decay=1e-5)
discriminator.train()
## DONE model
## load data from saved files
data_tuple = load_data(args, rng)
if args.require_image:
train_X, train_Y, test_X, test_Y, train_ims, test_ims = data_tuple
else:
train_X, train_Y, test_X, test_Y = data_tuple
train_ims, test_ims = None, None
## DONE: load data from saved files
## training job
kld_weight = 0.05
prev_save_epoch = 0
patience = 20
for epoch in range(args.num_epochs):
args.epoch = epoch
## train discriminator
if epoch > 100 and (epoch - prev_save_epoch) > patience:
print('early stopping at:', epoch)
break
if epoch > 0 and epoch % 3 == 0:
train_discriminator(args, rng, generator, discriminator, gan_criterion, d_optimizer, train_X, train_Y, train_ims=train_ims)
else:
train_generator(args, rng, generator, discriminator, reg_criterion, gan_criterion, g_optimizer, train_X, train_Y, train_ims=train_ims)
currBestLoss = val_generator(args, generator, discriminator, reg_criterion, g_optimizer, test_X, test_Y, currBestLoss, test_ims=test_ims)
#######################################################
## local helper methods
#######################################################
## function to load data from external files
def load_data(args, rng):
gt_windows = None
quant_windows = None
p0_paths = None
hand_ims = None
## load from external files
for key, value in DATA_PATHS.items():
key = os.path.join(args.base_path, key)
curr_p0, curr_p1, curr_paths, _ = load_windows(key, args.pipeline, require_image=args.require_image)
if gt_windows is None:
if args.require_image:
hand_ims = curr_p0[1]
curr_p0 = curr_p0[0]
gt_windows = curr_p0
quant_windows = curr_p1
p0_paths = curr_paths
else:
if args.require_image:
hand_ims = np.concatenate((hand_ims, curr_p0[1]), axis=0)
curr_p0 = curr_p0[0]
gt_windows = np.concatenate((gt_windows, curr_p0), axis=0)
quant_windows = np.concatenate((quant_windows, curr_p1), axis=0)
p0_paths = np.concatenate((p0_paths, curr_paths), axis=0)
print '===> in/out', gt_windows.shape, quant_windows.shape
if args.require_image:
print "===> hand_ims", hand_ims.shape
## DONE load from external files
## shuffle and set train/validation
N = gt_windows.shape[0]
train_N = int(N * 0.7)
idx = np.random.permutation(N)
train_idx, test_idx = idx[:train_N], idx[train_N:]
train_X, test_X = gt_windows[train_idx, :, :], gt_windows[test_idx, :, :]
train_Y, test_Y = quant_windows[train_idx, :, :], quant_windows[test_idx, :, :]
if args.require_image:
train_ims, test_ims = hand_ims[train_idx,:,:], hand_ims[test_idx,:,:]
train_ims = train_ims.astype(np.float32)
test_ims = test_ims.astype(np.float32)
print "====> train/test", train_X.shape, test_X.shape
train_X = np.swapaxes(train_X, 1, 2).astype(np.float32)
train_Y = np.swapaxes(train_Y, 1, 2).astype(np.float32)
test_X = np.swapaxes(test_X, 1, 2).astype(np.float32)
test_Y = np.swapaxes(test_Y, 1, 2).astype(np.float32)
body_mean_X, body_std_X, body_mean_Y, body_std_Y = calc_standard(train_X, train_Y, args.pipeline)
np.savez_compressed(args.model_path + '{}{}_preprocess_core.npz'.format(args.tag, args.pipeline),
body_mean_X=body_mean_X, body_std_X=body_std_X,
body_mean_Y=body_mean_Y, body_std_Y=body_std_Y)
train_X = (train_X - body_mean_X) / body_std_X
test_X = (test_X - body_mean_X) / body_std_X
train_Y = (train_Y - body_mean_Y) / body_std_Y
test_Y = (test_Y - body_mean_Y) / body_std_Y
print("=====> standardization done")
# Data shuffle
I = np.arange(len(train_X))
rng.shuffle(I)
train_X = train_X[I]
train_Y = train_Y[I]
if args.require_image:
train_ims = train_ims[I]
return (train_X, train_Y, test_X, test_Y, train_ims, test_ims)
## DONE shuffle and set train/validation
return (train_X, train_Y, test_X, test_Y)
## calc temporal deltas within sequences
def calc_motion(tensor):
res = tensor[:,:,:1] - tensor[:,:,:-1]
return res
## training discriminator functin
def train_discriminator(args, rng, generator, discriminator, gan_criterion, d_optimizer, train_X, train_Y, train_ims=None):
generator.eval()
discriminator.train()
batchinds = np.arange(train_X.shape[0] // args.batch_size)
totalSteps = len(batchinds)
rng.shuffle(batchinds)
for bii, bi in enumerate(batchinds):
## setting batch data
idxStart = bi * args.batch_size
inputData_np = train_X[idxStart:(idxStart + args.batch_size), :, :]
outputData_np = train_Y[idxStart:(idxStart + args.batch_size), :, :]
inputData = Variable(torch.from_numpy(inputData_np)).cuda()
outputGT = Variable(torch.from_numpy(outputData_np)).cuda()
imsData = None
if args.require_image:
imsData_np = train_ims[idxStart:(idxStart + args.batch_size), :, :]
imsData = Variable(torch.from_numpy(imsData_np)).cuda()
## DONE setting batch data
with torch.no_grad():
fake_data = generator(inputData, image_=imsData).detach()
fake_motion = calc_motion(fake_data)
real_motion = calc_motion(outputGT)
fake_score = discriminator(fake_motion)
real_score = discriminator(real_motion)
d_loss = gan_criterion(fake_score, torch.zeros_like(fake_score)) + gan_criterion(real_score, torch.ones_like(real_score))
d_optimizer.zero_grad()
d_loss.backward()
d_optimizer.step()
## training generator function
def train_generator(args, rng, generator, discriminator, reg_criterion, gan_criterion, g_optimizer, train_X, train_Y, train_ims=None):
discriminator.eval()
generator.train()
batchinds = np.arange(train_X.shape[0] // args.batch_size)
totalSteps = len(batchinds)
rng.shuffle(batchinds)
avgLoss = 0.
for bii, bi in enumerate(batchinds):
## setting batch data
idxStart = bi * args.batch_size
inputData_np = train_X[idxStart:(idxStart + args.batch_size), :, :]
outputData_np = train_Y[idxStart:(idxStart + args.batch_size), :, :]
inputData = Variable(torch.from_numpy(inputData_np)).cuda()
outputGT = Variable(torch.from_numpy(outputData_np)).cuda()
imsData = None
if args.require_image:
imsData_np = train_ims[idxStart:(idxStart + args.batch_size), :, :]
imsData = Variable(torch.from_numpy(imsData_np)).cuda()
## DONE setting batch data
output = generator(inputData, image_=imsData)
fake_motion = calc_motion(output)
with torch.no_grad():
fake_score = discriminator(fake_motion)
fake_score = fake_score.detach()
g_loss = reg_criterion(output, outputGT) + gan_criterion(fake_score, torch.ones_like(fake_score))
g_optimizer.zero_grad()
g_loss.backward()
g_optimizer.step()
avgLoss += g_loss.item() * args.batch_size
if bii % args.log_step == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Perplexity: {:5.4f}'.format(args.epoch, args.num_epochs, bii, totalSteps,
avgLoss / (totalSteps * args.batch_size),
np.exp(avgLoss / (totalSteps * args.batch_size))))
## validating generator function
def val_generator(args, generator, discriminator, reg_criterion, g_optimizer, test_X, test_Y, currBestLoss, test_ims=None):
testLoss = 0
generator.eval()
discriminator.eval()
batchinds = np.arange(test_X.shape[0] // args.batch_size)
totalSteps = len(batchinds)
for bii, bi in enumerate(batchinds):
## setting batch data
idxStart = bi * args.batch_size
inputData_np = test_X[idxStart:(idxStart + args.batch_size), :, :]
outputData_np = test_Y[idxStart:(idxStart + args.batch_size), :, :]
inputData = Variable(torch.from_numpy(inputData_np)).cuda()
outputGT = Variable(torch.from_numpy(outputData_np)).cuda()
imsData = None
if args.require_image:
imsData_np = test_ims[idxStart:(idxStart + args.batch_size), :, :]
imsData = Variable(torch.from_numpy(imsData_np)).cuda()
## DONE setting batch data
output = generator(inputData, image_=imsData)
g_loss = reg_criterion(output, outputGT)
testLoss += g_loss.item() * args.batch_size
testLoss /= totalSteps * args.batch_size
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Perplexity: {:5.4f}'.format(args.epoch, args.num_epochs, bii, totalSteps,
testLoss,
np.exp(testLoss)))
print('----------------------------------')
if testLoss < currBestLoss:
prev_save_epoch = args.epoch
checkpoint = {'epoch': args.epoch,
'state_dict': generator.state_dict(),
'g_optimizer': g_optimizer.state_dict()}
fileName = args.model_path + '/{}{}_checkpoint_e{}_loss{:.4f}.pth'.format(args.tag, args.pipeline, args.epoch, testLoss)
torch.save(checkpoint, fileName)
currBestLoss = testLoss
return currBestLoss
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--base_path', type=str, required=True, help='path to the directory where the data files are stored')
parser.add_argument('--pipeline', type=str, default='arm2wh', help='pipeline specifying which input/output joints to use')
parser.add_argument('--num_epochs', type=int, default=100, help='number of training epochs')
parser.add_argument('--batch_size', type=int, default=64, help='batch size for training')
parser.add_argument('--learning_rate', type=float, default=1e-3, help='learning rate for training G and D')
parser.add_argument('--require_image', action='store_true', help='use additional image feature or not')
parser.add_argument('--model_path', type=str, required=True , help='path for saving trained models')
parser.add_argument('--log_step', type=int , default=100, help='step size for prining log info')
parser.add_argument('--tag', type=str, default='', help='prefix for naming purposes')
args = parser.parse_args()
print(args)
main(args)