-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
306 lines (271 loc) · 10.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# Copyright 2023-2024 Xiaomi Corporation and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import math
import os
import time
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Union
import torch
# temp fix bug https://stackoverflow.com/questions/76911396/the-error-of-torch-compile-with-the-cuda12-1
import torch._dynamo
import torch.distributed as dist
import transformers
import yaml
from torch.utils.data import Dataset
from transformers import (HfArgumentParser, Trainer, TrainingArguments,
set_seed, trainer_pt_utils, trainer_utils)
from dataset import AudioDataset, collate_fn
from models.loae import CedLlama7BCaptionModel
from utils.utils import get_cpu_mem_info, get_gpu_info, get_tcp_address
torch._dynamo.config.suppress_errors = True
class LoaeTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
outputs = model(inputs)
loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]
return (loss, outputs) if return_outputs else loss
def log(self, logs: Dict[str, float]) -> None:
log_str_list = []
for key, value in logs.items():
log_str_list.append("{} {}".format(key, round(value, 12)))
logging.info(
"epoch {}/{}, step {}, {}".format(
round(self.state.epoch, 3),
self.state.num_train_epochs,
self.state.global_step,
",".join(log_str_list),
)
)
# print cpu and gpu info
if self.state.global_step % 1000 == 0:
gpu_id = int(os.getenv("CUDA_VISIBLE_DEVICES"))
gpu_info = get_gpu_info(gpu_id)
cpu_mem = get_cpu_mem_info()
logging.info(
"step {} gpu {} info: mem({}/{}/{})MB, rate:{}% cpu mem:{}/{:.3f}/{:.3f} GB".format(
self.state.global_step,
gpu_id,
gpu_info[0],
gpu_info[1],
gpu_info[2],
gpu_info[3],
cpu_mem["count"],
cpu_mem["virt_mem"],
cpu_mem["res_mem"],
)
)
def evaluate(
self,
eval_dataset: Optional[Union[Dataset, Dict[str, Dataset]]] = None,
ignore_keys: Optional[List[str]] = None,
metric_key_prefix: str = "eval",
) -> Dict[str, float]:
eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
if isinstance(eval_dataset, dict):
metrics = {}
for eval_name, _eval_dataset in eval_dataset.items():
dataset_metrics = self.evaluate(
_eval_dataset,
ignore_keys=ignore_keys,
metric_key_prefix=f"{metric_key_prefix}_{eval_name}",
)
metrics.update(dataset_metrics)
return metrics
self._memory_tracker.start()
eval_dataloader = self.get_eval_dataloader(eval_dataset)
start_time = time.time()
model = self._wrap_model(self.model, training=False, dataloader=eval_dataloader)
num_examples = self.num_examples(eval_dataloader)
model.eval()
total_loss = 0.0
total_samples = 0
with torch.no_grad():
for i, batch_data in enumerate(eval_dataloader):
loss = self.compute_loss(model, batch_data)
if torch.isfinite(loss):
batch_size = trainer_pt_utils.find_batch_size(batch_data)
total_samples += batch_size
total_loss += loss.item() * batch_size
eval_time = time.time() - start_time
avg_loss = total_loss / (total_samples if total_samples > 0 else 1)
metrics = {"{}_loss".format(metric_key_prefix): avg_loss, "time": eval_time}
# save eval loss for each Evaluation Dataset
self.state.log_history.append({"{}_loss".format(metric_key_prefix): avg_loss})
total_batch_size = self.args.eval_batch_size * self.args.world_size
metrics.update(
trainer_utils.speed_metrics(
metric_key_prefix,
start_time,
num_samples=num_examples,
num_steps=math.ceil(num_examples / total_batch_size),
)
)
logging.info(
"{} for epoch {}, samples {}/{}, steps {}, loss {}".format(
metric_key_prefix,
self.state.epoch,
total_samples,
num_examples,
self.state.global_step,
avg_loss,
)
)
self._memory_tracker.stop_and_update_metrics(metrics)
return metrics
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
config_path: Optional[str] = field(default=None, metadata={"help": "setting files"})
out_dir: Optional[str] = field(
default=None, metadata={"help": "output dir for model"}
)
data_dir: Optional[str] = field(
default=None, metadata={"help": "train and dev data file in dir"}
)
resume_checkpoint: Optional[str] = field(
default="none", metadata={"help": "resume the model from checkpoint"}
)
rank: Optional[int] = field(
default=0, metadata={"help": "the rank for distributed training"}
)
world_size: Optional[int] = field(
default=1, metadata={"help": "the total gpu number for distributed training"}
)
init_model_path: Optional[str] = field(
default="none", metadata={"help": "init the model weight by other model"}
)
def __post_init__(self):
if self.config_path is None:
raise ValueError("config path should not none")
def main():
parser = HfArgumentParser(DataTrainingArguments)
data_args = parser.parse_args_into_dataclasses()[0]
logging.basicConfig(
level=logging.INFO, format="%(asctime)s %(levelname)s %(message)s"
)
transformers.logging.set_verbosity_info()
logging.info(data_args)
gpu_id = int(os.getenv("CUDA_VISIBLE_DEVICES"))
data_args.rank = data_args.rank - 1
logging.info("using gpu id:{}".format(gpu_id))
# load config
set_seed(20)
with open(data_args.config_path, "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
ddp_dir = os.path.join(data_args.out_dir, "ddp")
os.makedirs(ddp_dir, exist_ok=True)
tcp_address = get_tcp_address(ddp_dir, data_args.rank, data_args.world_size)
logging.info("tcp address:{}".format(tcp_address))
if data_args.world_size > 1:
os.environ["LOCAL_RANK"] = "0"
init_method = "tcp://{}".format(tcp_address)
logging.info("ddp init method:{}".format(init_method))
dist.init_process_group(
"nccl",
init_method=init_method,
world_size=data_args.world_size,
rank=data_args.rank,
)
logging.info(
"torch.distributed is initialized with backend=nccl, init method=%s, world-size=%d, rank=%d, "
"gpu id=%d" % (init_method, data_args.world_size, data_args.rank, gpu_id)
)
dataset_batch_size = config["dataset_conf"]["batch_size"]
num_workers = config["dataset_conf"]["num_workers"]
num_epoch = config["epochs"]
training_args = TrainingArguments(
output_dir=data_args.out_dir,
seed=20,
do_train=True,
do_eval=True,
dataloader_num_workers=num_workers,
remove_unused_columns=False,
save_strategy="epoch",
save_total_limit=num_epoch,
greater_is_better=False,
metric_for_best_model="eval_clo_loss",
load_best_model_at_end=False,
per_device_train_batch_size=dataset_batch_size,
evaluation_strategy="epoch",
per_device_eval_batch_size=dataset_batch_size,
save_safetensors=False,
logging_dir=os.path.join(data_args.out_dir, "log"),
max_grad_norm=config["clip_grad"],
gradient_accumulation_steps=config["acc_grad"],
)
training_args = training_args.set_optimizer(
config["optim_args"]["name"],
learning_rate=config["optim_args"]["lr"],
weight_decay=config["optim_args"]["weight_decay"],
)
training_args = training_args.set_lr_scheduler(
"cosine", num_epoch, warmup_ratio=config["warmup_radio"]
)
training_args = training_args.set_logging(
strategy="steps", steps=100, report_to=[], level="info", first_step=True
)
logging.info(training_args)
train_data_file = os.path.join(
os.path.join(data_args.data_dir, "train"), "format.data"
)
ac_val_data_file = os.path.join(
os.path.join(data_args.data_dir, "val/ac_val"), "format.data"
)
clo_val_data_file = os.path.join(
os.path.join(data_args.data_dir, "val/clo_val"), "format.data"
)
sample_rate, max_length = (
config["dataset_conf"]["sample_rate"],
config["dataset_conf"]["max_len"],
)
train_dataset = AudioDataset(
train_data_file, sample_rate=sample_rate, max_length=max_length
)
ac_val_dataset = AudioDataset(
ac_val_data_file, sample_rate=sample_rate, max_length=max_length
)
clo_val_dataset = AudioDataset(
clo_val_data_file, sample_rate=sample_rate, max_length=max_length
)
eval_dataset = {"clo": clo_val_dataset, "ac": ac_val_dataset}
model = CedLlama7BCaptionModel(config)
if data_args.init_model_path != "none":
init_state = torch.load(data_args.init_model_path, map_location="cpu")
model.load_state_dict(init_state)
# release memory
del init_state
logging.info("Loaded init weight from {}".format(data_args.init_model_path))
logging.info(model)
model.print_trainable_parameters()
model.print_module_parameters()
trainer = LoaeTrainer(
model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=collate_fn,
compute_metrics=None,
)
checkpoint = None
if data_args.resume_checkpoint != "none":
checkpoint = data_args.resume_checkpoint
trainer.train(resume_from_checkpoint=checkpoint)
logging.info("Training done.")
if __name__ == "__main__":
main()