-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathLognormalAssetModel.jl
221 lines (185 loc) · 5.57 KB
/
LognormalAssetModel.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
"""
struct LognormalAssetModel <: AssetModel
alias::String
sigma_x::BackwardFlatVolatility
state_alias::AbstractVector
factor_alias::AbstractVector
correlation_holder::CorrelationHolder
quanto_model::Union{AssetModel, Nothing}
end
A `LognormalAssetModel` is a model for simulating a spot price in a
generalised Black-Scholes framework.
"""
struct LognormalAssetModel <: AssetModel
alias::String
sigma_x::BackwardFlatVolatility
state_alias::AbstractVector
factor_alias::AbstractVector
correlation_holder::CorrelationHolder
quanto_model::Union{AssetModel, Nothing}
end
"""
lognormal_asset_model(
alias::String,
sigma_x::BackwardFlatVolatility,
ch::CorrelationHolder,
quanto_model::Union{AssetModel, Nothing}
)
Create a LognormalAssetModel.
"""
function lognormal_asset_model(
alias::String,
sigma_x::BackwardFlatVolatility,
ch::CorrelationHolder,
quanto_model::Union{AssetModel, Nothing}
)
@assert size(sigma_x.values)[1] == 1
state_alias = [ alias * "_x" ]
factor_alias = [ alias * "_x" ]
return LognormalAssetModel(alias, sigma_x, state_alias, factor_alias, ch, quanto_model)
end
"""
parameter_grid(m::LognormalAssetModel)
Return a list of times representing the (joint) grid points of piece-wise
constant model parameters.
This method is intended to be used in conjunction with time-integration
mehods that require smooth integrand functions.
"""
function parameter_grid(m::LognormalAssetModel)
return m.sigma_x.times
end
"""
state_dependent_Theta(m::LognormalAssetModel)
Return whether Theta requires a state vector input X.
"""
state_dependent_Theta(m::LognormalAssetModel) =
(isnothing(m.quanto_model)) ? false : state_dependent_Sigma(m.quanto_model)
"""
state_alias_H(m::LognormalAssetModel)
Return a list of state alias strings required for (H * X) calculation.
"""
state_alias_H(m::LognormalAssetModel) = state_alias(m)
"""
state_dependent_H(m::LognormalAssetModel)
Return whether H requires a state vector input X.
"""
state_dependent_H(m::LognormalAssetModel) = false
"""
factor_alias_Sigma(m::LognormalAssetModel)
Return a list of factor alias strings required for (Sigma(u)^T Gamma Sigma(u)) calculation.
"""
factor_alias_Sigma(m::LognormalAssetModel) = factor_alias(m)
"""
state_dependent_Sigma(m::LognormalAssetModel)
Return whether Sigma requires a state vector input X.
"""
state_dependent_Sigma(m::LognormalAssetModel) = false
"""
asset_volatility(
m::LognormalAssetModel,
s::ModelTime,
t::ModelTime,
X::Union{ModelState, Nothing} = nothing,
)
Return a state-independent volatility function sigma(u) for the interval (s,t).
"""
function asset_volatility(
m::LognormalAssetModel,
s::ModelTime,
t::ModelTime,
X::Union{ModelState, Nothing} = nothing,
)
@assert isnothing(X) == !state_dependent_Sigma(m)
sigma(u) = m.sigma_x(u, TermstructureScalar)
return sigma
end
"""
Theta(
m::LognormalAssetModel,
s::ModelTime,
t::ModelTime,
X::Union{ModelState, Nothing} = nothing,
)
Return the deterministic drift component for simulation over the time period [s, t].
"""
function Theta(
m::LognormalAssetModel,
s::ModelTime,
t::ModelTime,
X::Union{ModelState, Nothing} = nothing,
)
@assert isnothing(X) == !state_dependent_Theta(m)
# alpha is a vector-valued function
alpha = quanto_drift(factor_alias(m), m.quanto_model, s, t, X)
# 'TermstructureScalar' yields scalar volatility
f(u) = m.sigma_x(u,TermstructureScalar)*(m.sigma_x(u,TermstructureScalar) + 2*alpha(u)[1])
val = _scalar_integral(f, s, t, parameter_grid(m))
return [ -0.5 * val ]
end
"""
H_T(
m::LognormalAssetModel,
s::ModelTime,
t::ModelTime,
X::Union{ModelState, Nothing} = nothing,
)
Return the transposed of the convection matrix H for simulation over the time period
[s, t].
"""
function H_T(
m::LognormalAssetModel,
s::ModelTime,
t::ModelTime,
X::Union{ModelState, Nothing} = nothing,
)
@assert isnothing(X) == !state_dependent_H(m)
return ones(1,1)
end
"""
Sigma_T(
m::LognormalAssetModel,
s::ModelTime,
t::ModelTime,
X::Union{ModelState, Nothing} = nothing,
)
Return a matrix-valued function representing the volatility matrix function.
The signature of the resulting function is (u::ModelTime). Here, u represents the
observation time.
"""
function Sigma_T(
m::LognormalAssetModel,
s::ModelTime,
t::ModelTime,
X::Union{ModelState, Nothing} = nothing,
)
@assert isnothing(X) == !state_dependent_Sigma(m)
f(u) = m.sigma_x(u, TermstructureScalar) * ones(1,1)
return f
end
"""
log_asset(m::LognormalAssetModel, model_alias::String, t::ModelTime, X::ModelState)
Retrieve the normalised state variable from an asset model.
"""
function log_asset(m::LognormalAssetModel, model_alias::String, t::ModelTime, X::ModelState)
@assert alias(m) == model_alias
return X(state_alias(m)[1])
end
"""
simulation_parameters(
m::GaussianHjmModel,
ch::Union{CorrelationHolder, Nothing},
s::ModelTime,
t::ModelTime,
)
Pre-calculate parameters that are used in state-dependent Theta and Sigma calculation.
For LognormalAssetModel there are no valuations that should be cached.
"""
function simulation_parameters(
m::LognormalAssetModel,
ch::Union{CorrelationHolder, Nothing},
s::ModelTime,
t::ModelTime,
)
#
return nothing
end