-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsynthesis.py
106 lines (100 loc) · 5.09 KB
/
synthesis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import numpy as np
import pyworld
import librosa
import tensorflow as tf
from duration_model import Duration_Graph
from acoustic_model import Acoustic_Graph
from MTTS.mandarin_frontend import txt2label
from utils import match_qs, mmn, read_file, demvn, ori_coarse_coding_features, extract_coarse_coding_and_postion_features
from hyperparams import hyperparams
hp = hyperparams()
import argparse
def only_chinese(sent):
flag = True
for ch in sent:
if ch < '\u4e00' or ch > '\u9fff':
flag = False
return flag
def get_norm_vec(fpath: str, dimension: int):
'''
:param fpath: String. Normalise vector file path.
:param dimension: An integer. Normalise vector dimension.
:return: Pair. If min max vector then min_vec, max_vec, else return mean_vec, std_vec.
'''
norm_vec = read_file(fpath, dimension)
f_vec = np.reshape(norm_vec[0], (-1, dimension))
s_vec = np.reshape(norm_vec[1], (-1, dimension))
return f_vec, s_vec
def extend_labels(inputs, duration):
'''
:param inputs: Numpy.array. [Unit_num, hp.DUR_IN_DIM]
:param duration: Numpy.array. [Unit_num, ] or [Unit_num, 1]
:return: [Phone_num, hp.SYN_IN_DIM]
'''
duration = np.reshape(duration, (-1, 1))
if inputs.shape[0] != duration.shape[0]:
raise Exception('This is a bug which results to labels unit_nums not equal to Duration unit_nums.')
outputs = np.zeros((1, hp.SYN_IN_DIM))
for i in range(inputs.shape[0]):
frame_number = int(duration[i][0])
# print('%d phone duration frame : %d'%(i, frame_number))
coarse_coding_features_matrix = extract_coarse_coding_and_postion_features(ori_coarse_coding_features,
frame_number)
# coarse_coding_features_matrix dimension is [frame_number, 4]
label_frame_level_metrix = np.tile(inputs[i], (frame_number, 1))
# label_frame_level_metrix dimension is [frame_number, 467]
features_matrix = np.concatenate((label_frame_level_metrix, coarse_coding_features_matrix), axis=1)
outputs = np.concatenate((outputs, features_matrix), axis=0)
outputs = outputs[1:, :]
return outputs
def handle(sent, fpath):
labs = txt2label(sent)
dur_in = match_qs(labs, hp.DUR_LAB_DIM, False)
dur_min_vec, dur_max_vec = get_norm_vec(os.path.join(hp.DATA_DIR, 'dur_minmax_vec.npy'), hp.DUR_LAB_DIM)
dur_in_norm = mmn(inputs=dur_in, min_vec=dur_min_vec, max_vec=dur_max_vec, dimension=hp.DUR_LAB_DIM)
dur_net = Duration_Graph(mode='infer')
dur_in_norm = np.reshape(dur_in_norm, [1, -1, hp.DUR_IN_DIM])
duration = dur_net.infer(dur_in_norm)
duration = np.reshape(duration, [-1, hp.DUR_OUT_DIM])
dur_mean_vec, dur_std_vec = get_norm_vec(os.path.join(hp.DATA_DIR, 'dur_meanstd_vec.npy'), hp.DURATION_DIM)
duration_features = demvn(duration, dur_mean_vec, dur_std_vec, dimension=hp.DURATION_DIM)
syn_in = extend_labels(dur_in, duration_features)
syn_min_vec, syn_max_vec = get_norm_vec(os.path.join(hp.DATA_DIR, 'syn_minmax_vec.npy'), hp.SYN_LAB_DIM)
syn_in_norm = mmn(inputs=syn_in, min_vec=syn_min_vec, max_vec=syn_max_vec, dimension=hp.SYN_LAB_DIM)
syn_net = Acoustic_Graph(mode='infer')
syn_in_norm = np.reshape(syn_in_norm, [1, -1, hp.SYN_IN_DIM])
acoustic = syn_net.infer(syn_in_norm)
acoustic = np.reshape(acoustic, [-1, hp.SYN_OUT_DIM])
syn_mean_vec, syn_std_vec = get_norm_vec(os.path.join(hp.DATA_DIR, 'syn_meanstd_vec.npy'), hp.ACOUSTIC_DIM)
acoustic_features = demvn(acoustic, syn_mean_vec, syn_std_vec, dimension=hp.ACOUSTIC_DIM)
index = 0
f0_features = acoustic_features[:, index: index + hp.F0_DIM]
f0_features = np.reshape(f0_features, (-1))
index += hp.F0_DIM * 3
coded_sp_features = acoustic_features[:, index: index + hp.CODED_SP_DIM]
index += hp.CODED_SP_DIM * 3
coded_ap_features = acoustic_features[:, index: index + hp.CODED_AP_DIM]
f0_features = np.array(f0_features, dtype=np.float64)
coded_sp_features = np.array(coded_sp_features, dtype=np.float64)
coded_ap_features = np.array(coded_ap_features, dtype=np.float64)
decoded_sp_features = pyworld.decode_spectral_envelope(coded_sp_features, hp.SR, fft_size=hp.N_FFT)
decoded_ap_features = pyworld.decode_aperiodicity(coded_ap_features, hp.SR, fft_size=hp.N_FFT)
new_y = pyworld.synthesize(f0_features, decoded_sp_features, decoded_ap_features, hp.SR)
librosa.output.write_wav(fpath, new_y, hp.SR)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--sentence', '-s', type=str, help='Synthesize content. Only supported chinese.')
parser.add_argument('--path', '-f', type=str, help='Synthesized file path.')
parser.set_defaults(sentence=None)
parser.set_defaults(path=None)
args = parser.parse_args()
sent = args.sentence
path = args.path
if sent is None or only_chinese(sent) is False:
raise Exception('Input sentence is illegal. Only supported to chinese. Please check.')
if path is None:
raise Exception('Please input file path.')
handle(sent, path)
if __name__ == '__main__':
main()