-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathREADME.Rmd
294 lines (226 loc) · 7.7 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-"
)
options(fgeo.quiet = TRUE)
```
# <img src="https://i.imgur.com/vTLlhbp.png" align="right" height=88 /> Analyze ForestGEO data
<!-- badges: start -->
[![lifecycle](https://img.shields.io/badge/lifecycle-maturing-blue.svg)](https://www.tidyverse.org/lifecycle/#maturing)
[![CRAN status](https://www.r-pkg.org/badges/version/fgeo.analyze)](https://cran.r-project.org/package=fgeo.analyze)
[![R-CMD-check](https://github.com/forestgeo/fgeo.analyze/workflows/R-CMD-check/badge.svg)](https://github.com/forestgeo/fgeo.analyze/actions)
[![Codecov test coverage](https://codecov.io/gh/forestgeo/fgeo.analyze/branch/master/graph/badge.svg)](https://codecov.io/gh/forestgeo/fgeo.analyze?branch=master)
<!-- badges: end -->
__fgeo.analyze__ provides functions to analyze ForestGEO data.
## Installation
Install the latest stable version of **fgeo.analyze** from CRAN with:
```R
install.packages("fgeo.analyze", repos = these_repos)
```
Install the development version of **fgeo.analyze** with:
```R
# install.packages("devtools")
devtools::install_github("forestgeo/fgeo.analyze")
```
Or [install all **fgeo** packages in one step](https://forestgeo.github.io/fgeo/index.html#installation).
## Example
```{r}
library(dplyr)
library(fgeo.x)
library(fgeo.tool)
library(fgeo.analyze)
```
### Abundance
Your data may have multiple stems per treeid and even multiple measures per
stemid (if trees have buttresses).
```{r}
# Trees with buttresses may have multiple measurements of a single stem.
# Main stems have highest `HOM`, then largest `DBH`.
vft <- tribble(
~CensusID, ~TreeID, ~StemID, ~DBH, ~HOM,
1, "1", "1.1", 88, 130,
1, "1", "1.1", 10, 160, # Main stem
1, "2", "2.1", 20, 130,
1, "2", "2.2", 30, 130, # Main stem
)
```
Fundamentally, `abundance()` counts rows. All of these results are the same:
```{r}
nrow(vft)
count(vft)
summarize(vft, n = n())
abundance(vft)
```
But that result is likely not what you expect. Instead, you likely expect this:
```{r}
summarize(vft, n = n_distinct(TreeID))
```
As shown above, you can get a correct result by combining `summarize()` and `n_distinct()` (from the __dplyr__ package). But `abundance()` includes some useful additional features (see `?abundance()`). This code conveys your intention more clearly, i.e. to calculate tree abundance by counting the number of main stems:
```{r}
(main_stems <- pick_main_stem(vft))
abundance(main_stems)
```
If you have data from multiple censuses, then you can compute by census (or any other group).
```{r}
vft2 <- tribble(
~CensusID, ~TreeID, ~StemID, ~DBH, ~HOM,
1, "1", "1.1", 10, 130,
1, "1", "1.2", 20, 130, # Main stem
2, "1", "1.1", 12, 130,
2, "1", "1.2", 22, 130 # Main stem
)
by_census <- group_by(vft2, CensusID)
(main_stems_by_census <- pick_main_stem(by_census))
abundance(main_stems_by_census)
```
Often you will need to first subset data (e.g. by `status` or `DBH`) and then count.
```{r}
over20 <- filter(main_stems_by_census, DBH > 20)
abundance(over20)
```
### Basal area
If trees have buttresses, then you may need to pick the main stemid of each stem so you do not count the same stem more than once.
```{r}
vft3 <- tribble(
~CensusID, ~TreeID, ~StemID, ~DBH, ~HOM,
1, "1", "1.1", 88, 130,
1, "1", "1.1", 10, 160, # Main stem
1, "2", "2.1", 20, 130,
1, "2", "2.2", 30, 130, # Main stem
2, "1", "1.1", 98, 130,
2, "1", "1.1", 20, 160, # Main stem
2, "2", "2.1", 30, 130,
2, "2", "2.2", 40, 130, # Main stem
)
(main_stemids <- pick_main_stemid(vft3))
main_stemids
basal_area(main_stemids)
```
`basal_area()` also allows you to compute by groups.
```{r}
by_census <- group_by(main_stemids, CensusID)
basal_area(by_census)
```
But if you want to compute on a subset of data, then you need to pick the data first.
```{r}
ten_to_twenty <- filter(by_census, DBH >= 10, DBH <= 20)
basal_area(ten_to_twenty)
```
### Abundance and basal area aggregated by year
Example data.
```{r}
vft <- tibble(
PlotName = c("luq", "luq", "luq", "luq", "luq", "luq", "luq", "luq"),
CensusID = c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L),
TreeID = c(1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L),
StemID = c(1.1, 1.2, 2.1, 2.2, 1.1, 1.2, 2.1, 2.2),
Status = c("alive", "dead", "alive", "alive", "alive", "gone",
"dead", "dead"),
DBH = c(10L, NA, 20L, 30L, 20L, NA, NA, NA),
Genus = c("Gn", "Gn", "Gn", "Gn", "Gn", "Gn", "Gn", "Gn"),
SpeciesName = c("spp", "spp", "spp", "spp", "spp", "spp", "spp", "spp"),
ExactDate = c("2001-01-01", "2001-01-01", "2001-01-01", "2001-01-01",
"2002-01-01", "2002-01-01", "2002-01-01",
"2002-01-01"),
PlotCensusNumber = c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L),
Family = c("f", "f", "f", "f", "f", "f", "f", "f"),
Tag = c(1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L),
HOM = c(130L, 130L, 130L, 130L, 130L, 130L, 130L, 130L)
)
vft
```
Abundance by year.
```{r}
abundance_byyr(vft, DBH >= 10, DBH < 20)
abundance_byyr(vft, DBH >= 10)
```
Basal area by year.
```{r}
basal_area_byyr(vft, DBH >= 10)
```
### Demography
```{r}
census1 <- fgeo.x::tree5
census2 <- fgeo.x::tree6
```
Demography functions output a list that you can convert to a more convenient dataframe with `as_tibble()`.
```{r}
recruitment_ctfs(census1, census2)
as_tibble(
recruitment_ctfs(census1, census2, quiet = TRUE)
)
```
Except if you use `split2`: This argument creates a complex data structure that `as_tibble()` cannot handle.
```{r, error=TRUE}
# Errs
as_tibble(
recruitment_ctfs(
census1, census2,
split1 = census1$sp,
split2 = census1$quadrat, # `as_tibble()` can't handle this
quiet = TRUE
)
)
```
Instead, pass the multiple grouping variables to `split` via `interaction()`. This approach allows you to use any number of grouping variables and the output always works with `as_tibble()`.
```{r}
# Recommended
by_sp_and_quadrat <- interaction(census1$sp, census1$quadrat)
as_tibble(
recruitment_ctfs(
census1, census2,
split1 = by_sp_and_quadrat,
quiet = TRUE
)
)
```
The same applies for other demography functions.
```{r}
as_tibble(
mortality_ctfs(
census1, census2,
split1 = by_sp_and_quadrat,
quiet = TRUE
)
)
```
A simple way to separate the grouping variables is with `tidyr::separate()`.
```{r}
growth <- growth_ctfs(
census1, census2,
split1 = by_sp_and_quadrat,
quiet = TRUE
)
as_tibble(growth)
as_tibble(growth) %>%
tidyr::separate(groups, into = c("species", "quadrats"))
```
### Species-habitat associations
```{r}
# Pick alive trees, of 10 mm or more
tree <- download_data("luquillo_tree5_random")
census <- filter(tree, status == "A", dbh >= 10)
# Pick sufficiently abundant species
pick <- filter(add_count(census, sp), n > 50)
# Use your habitat data or create it from elevation data
elevation <- download_data("luquillo_elevation")
habitat <- fgeo_habitat(elevation, gridsize = 20, n = 4)
tt_test_result <- tt_test(pick, habitat)
# A list or matrices
tt_test_result
# A dataframe
as_tibble(tt_test_result)
# A simple summary to help you interpret the results
summary(tt_test_result)
```
[Get started with __fgeo__](https://forestgeo.github.io/fgeo/)
## Information
* [Getting help](https://forestgeo.github.io/fgeo.analyze/SUPPORT.html).
* [Contributing](https://forestgeo.github.io/fgeo.analyze/CONTRIBUTING.html).
* [Contributor Code of Conduct](https://forestgeo.github.io/fgeo.analyze/CODE_OF_CONDUCT.html).