-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexamples.tex.bak
345 lines (316 loc) · 14.4 KB
/
examples.tex.bak
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
A simple way to design differentially private mechanisms is to add
random noises.
Now we describe our main ideas for modelling differentially private mechanisms.
A state $s$ stores at least a database $x\in \mathcal{X}^n$, which is the data held by a trusted \emph{curator}. A transition corresponds to a data analysis mechanism.
States are typically labelled with the corresponding outputs
the curator generates. We explain the main idea with some examples.
\subsection{Survey Mechanisms}
\label{subsec:survey}
Consider the survey question: have you been diagnosed
with the disease $X$? In order to protect surveyees' privacy, each
answers the question as follows. The surveyee first flips a
coin. If it is tail, she answers the question truthfully. Otherwise,
she randomly answers \textit{Yes} or \textit{No}
uniformly~\cite{DR:14:AFDP}.
Let us analyze the mechanism briefly. The data universe $\mathcal{X}$
is $\{ +, - \}$. The mechanism $M$ is a randomized algorithm with
inputs in $\mathcal{X}$ and outputs in $\{ Y, N \}$. For any $x \in
\mathcal{X}$, we have $\frac{1}{4} \leq \Pr[M (x) = Y] \leq
\frac{3}{4}$. Hence $\Pr[M (x) = Y] \leq \frac{3}{4} = 3 \cdot
\frac{1}{4} \leq e^{\ln 3} \Pr[M (x') = Y]$ for any neighboring $x, x'
\in \mathcal{X}$. Similarly, $\Pr[M (x) = N] \leq e^{\ln 3} \Pr[M (x')
= N]$. The survey mechanism is $(\ln 3, 0)$-differentially private.
\begin{figure}
\centering
\begin{subfigure}{.48\columnwidth}
\[
\begin{array}{|c|c|c|}
\hline
&
\multicolumn{2}{c|}{output}
\\
\hline
state & Y & N \\
\hline
+ & \frac{3}{4} = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot 1
& \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot 0
\\
\hline
- & \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot 0
& \frac{3}{4} = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot 1
\\
\hline
\end{array}
\]
\caption{Survey Mechanism}
\label{figure:2-dp-table}
\end{subfigure}
\hspace{.05\columnwidth}
\begin{subfigure}{.40\columnwidth}
\resizebox{\columnwidth}{!}{
\begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node
distance=2cm,node/.style={circle,draw}]
\node[node] (p) at ( 0, .5) { $+$ };
\node[node] (n) at ( 0, -.5) { $-$ };
\node[node] (Y) at (-1.5, 0) { $s$ };
\node at (-1.5, .5) { $\mathit{out}_Y$ };
\node[node] (N) at ( 1.5, 0) { $t$ };
\node at ( 1.5, .5) { $\mathit{out}_N$ };
\path
(p) edge node [above] { $\frac{3}{4}$ } (Y)
(p) edge node [above] { $\frac{1}{4}$ } (N)
(n) edge node [below] { $\frac{1}{4}$ } (Y)
(n) edge node [below] { $\frac{3}{4}$ } (N)
;
\end{tikzpicture}
}
\caption{Corresponding Markov Chain}
\label{figure:2-dp-mdp}
\end{subfigure}
\caption{Survey Mechanism with $\ln 3$-Differential Privacy}
\label{figure:2-dp}
\end{figure}
\begin{example}\label{exa:survey}
Figure~\ref{figure:2-dp} shows the survey
mechanism and its corresponding Markov chain.
In the figure, the states
$+$ and $-$ denote the diagnoses are positive or negative
respectively; the states $s$ and $t$ denote answers to the survey
question and hence let $\mathit{out}_Y \in L (s)$ and $\mathit{out}_N
\in L (t)$.
States $+$ and $-$ are neighbors.
The random noise boosts the probability of answering
\textit{Yes} or \textit{No} to at least $1/4$ regardless of
diagnoses. Inferences on individual diagnosis can be plausibly denied.
Missing transitions (such as those from $s$ and $t$) lead
to a special state $\dagger$ with a self-loop. We omit the transitions
and the state $\dagger$ for clarity.
\end{example}
\subsection{Truncated $\alpha$-Geometric Mechanism}\label{subsec:geometric}
More sophisticated differentially private mechanisms are
available. Consider a query
$f : \mathcal{X}^n \rightarrow \bbfZ^{\geq 0}$. Let $\alpha \in (0, 1)$.
The \emph{$\alpha$-geometric mechanism}
outputs $f(x) + Y$ where $Y$ is a random variable with the geometric
distribution~\cite{GRS:09:UUPM,GRS:12:UUPM} :
\[
\Pr[Y = y] = \frac{1 - \alpha}{1 + \alpha}\alpha^{|y|}
\textmd{ for } y \in \bbfZ.
\]
The $\alpha$-geometric mechanism is oblivious since it has the same
output distribution on any inputs $x, x'$ with $f (x) = f
(x')$. Moreover, it is $(- {\Delta (f)} \ln \alpha, 0)$-differentially
private for any query $f$ with sensitivity $\Delta (f)$. The range of
the mechanism
however is $\bbfZ$. It may give nonsensical outputs such as
negative integers for queries with positive ranges.
The \emph{truncated $\alpha$-geometric mechanism over $\{ 0, 1,
\ldots, n \}$}
outputs $f (x) + Z$ where $Z$ is a random variable with the following
distribution:
\[
\Pr[Z = z] =
\left\{
\begin{array}{ll}
0 & \textmd{ if } z < - f (x) \\
\frac{\alpha^{f (x)}}{1 + \alpha} & \textmd{ if } z = -f (x)\\
\frac{1 - \alpha}{1 + \alpha}\alpha^{|z|} &
\textmd{ if } -f (x) < z < n - f (x)\\
\frac{\alpha^{n - f (x)}}{1 + \alpha} & \textmd{ if } z = n-f (x)\\
0 & \textmd{ if } z > n - f (x)
\end{array}
\right.
\]
Note the range of the truncated $\alpha$-geometric mechanism is
$\{ 0, 1, \ldots, n \}$. The truncated $\alpha$-geometric mechanism is
again oblivious; it is also $(- {\Delta (f)} \ln \alpha, 0)$-differentially
private for any query $f$ with sensitivity $\Delta (f)$.
The truncated $\frac{1}{2}$-geometric mechanism over $\{ 0, 1, \ldots, 5 \}$ is
given in Figure~\ref{figure:geometric-mechanism-table}.
\begin{figure}[tbh]
\centering
\begin{subfigure}{.40\columnwidth}
\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\textmd{input/output} & 0 & 1 & 2 & 3 & 4 & 5\\
\hline
0 & {2}/{3} & {1}/{6} & {1}/{12} & {1}/{24} & {1}/{48} & {1}/{48}\\
\hline
1 & {1}/{3} & {1}/{3} & {1}/{6} & {1}/{12} & {1}/{24} & {1}/{24}\\
\hline
2 & {1}/{6} & {1}/{6} & {1}/{3} & {1}/{6} & {1}/{12} & {1}/{12}\\
\hline
3 & {1}/{12} & {1}/{12} & {1}/{6} & {1}/{3} & {1}/{6} & {1}/{6}\\
\hline
4 & {1}/{24} & {1}/{24} & {1}/{12} & {1}/{6} & {1}/{3} & {1}/{3}\\
\hline
5 & {1}/{48} & {1}/{48} & {1}/{24} & {1}/{12} & {1}/{6} & {2}/{3}\\
\hline
\end{array}
\]
\caption{$1/2$-Geometric Mechanism}
\label{figure:geometric-mechanism-table}
\end{subfigure}
\hspace{.08\columnwidth}
\begin{subfigure}{.50\columnwidth}
\centering
\resizebox{.85\columnwidth}{!}{
\begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node
distance=2cm,node/.style={circle,draw}]
\node[node] (i0) at (0, 1) { $s_0$ };
\node at (0, 1.5) { $\mathit{in}_0$ };
\node at (0, 0) { $\vdots$ };
\node at (.8, -.8) { $\vdots$ };
\node[node] (i5) at (0, -1) { $s_5$ };
\node at (0, -.5) { $\mathit{in}_5$ };
\node[node] (o0) at (4, 2.5) { $t_0$ };
\node at (4, 3) { $\mathit{out}_0$ };
\node[node] (o1) at (4, 1.5) { $t_1$ };
\node at (4, 2) { $\mathit{out}_1$ };
\node[node] (o2) at (4, 0.5) { $t_2$ };
\node at (4, 1) { $\mathit{out}_2$ };
\node[node] (o3) at (4, -0.5) { $t_3$ };
\node at (4, 0) { $\mathit{out}_3$ };
\node[node] (o4) at (4, -1.5) { $t_4$ };
\node at (4, -1) { $\mathit{out}_4$ };
\node[node] (o5) at (4, -2.5) { $t_5$ };
\node at (4, -2) { $\mathit{out}_5$ };
\path
(i0) edge node [right=30,above=10] { $2/3$ } (o0)
(i0) edge node [right=30,above=3] { $1/6$ } (o1)
(i0) edge node [right=30,above=-3] { $1/12$ } (o2)
(i0) edge node [right=30,below=-5] { $1/24$ } (o3)
(i0) edge node [right=30,below] { $1/48$ } (o4)
(i0) edge node [right=30,below=8] { $1/48$ } (o5)
\hide{
(i1) edge node [above] { } (o0)
(i1) edge node [above] { } (o2)
(i1) edge node [above] { } (o3)
(i1) edge node [above] { } (o4)
(i1) edge node [above] { } (o5)
(i2) edge node [above] { } (o0)
(i2) edge node [above] { } (o2)
(i2) edge node [above] { } (o3)
(i2) edge node [above] { } (o4)
(i2) edge node [above] { } (o5)
(i3) edge node [above] { } (o0)
(i3) edge node [above] { } (o2)
(i3) edge node [above] { } (o3)
(i3) edge node [above] { } (o4)
(i3) edge node [above] { } (o5)
(i4) edge node [above] { } (o0)
(i4) edge node [above] { } (o2)
(i4) edge node [above] { } (o3)
(i4) edge node [above] { } (o4)
(i4) edge node [above] { } (o5)
}
(i5) edge node [right=10,above=16] { $1/48$ } (o0)
\hide{
(i5) edge node [above] { } (o2)
(i5) edge node [above] { } (o3)
(i5) edge node [above] { } (o4)
}
(i5) edge node [right=15,below=8] { $2/3$ } (o5)
;
\end{tikzpicture}
}
\caption{Markov Chain}
\label{figure:geometric-mechanism-markov-chain}
\end{subfigure}
\caption{A Markov Chain for $\frac{1}{2}$-Geometric Mechanism}
\label{figure:geometric-mechanism}\vspace*{-.5cm}
\end{figure}
Similar to the survey mechanism, it is
straightfoward to model the truncated $\frac{1}{2}$-geometric
mechanisms as Markov chains.
\begin{example}
Let the state $s_k$ and $t_l$
denote the input value $k$ and output value $l$ respectively. Define
the state set $S = \{ s_k, t_k : k \in \{ 0, 1, \ldots, n \} \}$.
The probability transition $\wp (s_k, t_l)$ is the probability of the
output value $l$ on the input value $k$ as defined in the
mechanism. Moreover, we have $\mathit{in}_k \in L (s_k)$ and
$\mathit{out}_k \in L (t_k)$ for $k \in \{ 0, 1, \ldots, n \}$.
If $\Delta (f) = 1$, $s_k$ and $s_l$ are
neighbors iff $| k - l | \leq 1$.
Figure~\ref{figure:geometric-mechanism-markov-chain} gives
the Markov chain of the truncated
$\frac{1}{2}$-geometric mechanism over $\{ 0, 1, \ldots, 5 \}$.
\end{example}
\begin{algorithm}[tbh]
\begin{algorithmic}[1]
\Function{OnlineModel}{$d$, $t$}
\Match{the input threshold $t$}
\Comment{Assignments of $t'$ by $\frac{1}{4}$-geometric mechanism}
\lCase{$0$}{$t' \leftarrow 0, 1,2,3,4,5$ with probability
$\frac{4}{5}$,$\frac{3}{20}$,
$\frac{3}{80}$,$\frac{3}{320}$,
$\frac{3}{1280}$,$\frac{1}{1280}$ respectively}
\lCase{$1$}{$t' \leftarrow 0, 1,2,3,4,5$ with probability
$\frac{1}{5}$,$\frac{3}{5}$,
$\frac{3}{20}$,$\frac{3}{80}$,
$\frac{3}{320}$,$\frac{1}{320}$ respectively}
\lCase{$2$}{$t' \leftarrow 0, 1,2,3,4,5$ with probability
$\frac{1}{20}$,$\frac{3}{20}$,
$\frac{3}{5}$,$\frac{3}{20}$,
$\frac{3}{80}$,$\frac{1}{80}$ respectively}
\lCase{$3$}{$t' \leftarrow 0, 1,2,3,4,5$ with probability
$\frac{1}{80}$,$\frac{3}{80}$,
$\frac{3}{20}$,$\frac{3}{5}$,
$\frac{3}{20}$,$\frac{1}{20}$ respectively}
\lCase{$4$}{$t' \leftarrow 0, 1,2,3,4,5$ with probability
$\frac{1}{320}$,$\frac{3}{320}$,
$\frac{3}{80}$,$\frac{3}{20}$,
$\frac{3}{5}$,$\frac{1}{5}$ respectively}
\lCase{$5$}{$t' \leftarrow 0, 1,2,3,4,5$ with probability
$\frac{1}{1280}$,$\frac{3}{1280}$,
$\frac{3}{320}$,$\frac{3}{80}$,
$\frac{3}{20}$,$\frac{4}{5}$ respectively}
\EndMatch
\For{each query $f_i$}
\Match{the input databese $d$}
\Comment{Assignments of $f_{i}'$ by $\frac{1}{2}$-geometric mechanism}
\lCase{$0$}{$f_{i}' \leftarrow 0, 1,2,3,4,5$ with probability
$\frac{2}{3}$,$\frac{1}{6}$,
$\frac{1}{12}$,$\frac{1}{24}$,
$\frac{1}{48}$,$\frac{1}{48}$ respectively}
\lCase{$1$}{$f_{i}' \leftarrow 0, 1,2,3,4,5$ with probability
$\frac{1}{3}$,$\frac{1}{3}$,
$\frac{1}{6}$,$\frac{1}{12}$,
$\frac{1}{24}$,$\frac{1}{24}$ respectively}
\lCase{$2$}{$f_{i}' \leftarrow 0, 1,2,3,4,5$ with probability
$\frac{1}{6}$,$\frac{1}{6}$,
$\frac{1}{3}$,$\frac{1}{6}$,
$\frac{1}{12}$,$\frac{1}{12}$ respectively}
\lCase{$3$}{$f_{i}' \leftarrow 0, 1,2,3,4,5$ with probability
$\frac{1}{12}$,$\frac{1}{12}$,
$\frac{1}{6}$,$\frac{1}{3}$,
$\frac{1}{6}$,$\frac{1}{6}$ respectively}
\lCase{$4$}{$f_{i}' \leftarrow 0, 1,2,3,4,5$ with probability
$\frac{1}{24}$,$\frac{1}{24}$,
$\frac{1}{12}$,$\frac{1}{6}$,
$\frac{1}{3}$,$\frac{1}{3}$ respectively}
\lCase{$5$}{$f_{i}' \leftarrow 0, 1,2,3,4,5$ with probability
$\frac{1}{48}$,$\frac{1}{48}$,
$\frac{1}{24}$,$\frac{1}{12}$,
$\frac{1}{6}$,$\frac{2}{3}$ respectively}
\EndMatch
\If{$f_{i}'>t'$}
\State{$a_i=\top$}
\State{\Return}
\Else
\State{$a_i=\bot$}
\EndIf
\EndFor
\EndFunction
\end{algorithmic}
\caption{Input is a private database $d \in \{0,1,\ldots,5\}$, an adaptively chosen stream of sensitivity 1 queries $f_1,f_2$,\ldots, a threshold $t \in \{0,1,\ldots,5\}$. Output is a stream of answers $a_1,a_2$,\ldots}
\label{algorithm:online-model}
\end{algorithm}
\subsection{Above Threshold Mechanisms}
In the differentially privacy context, we differentiate between \emph{offline} and \emph{online} models.
In the offline (or \emph{non-interactive}) model the curator releases the outputs only once and plays no further role. Thus the models we constructed in previous section are offline models. On the contrary, in the online (or \emph{interactive}) model the curator can permit further queries. In this setting it is obvious that queries do not change database themselves. To maintain differential privacy, the curator however can decide to change data analysis mechanisms accordingly. For instance, after a certain output is disclosed or a certain number of queries, it may decide to disable further queries.
Below we describe an online model adapted from~\cite{DR:14:AFDP}: it is used in the scenario where a large amount of queries occur, but we only care for the queries which
are above a given threshold. Other queries below the threshold are considered \emph{irrelevant} and won't cause privacy disclosure. In~\cite{DR:14:AFDP}, the model is set for continuous database, and the Laplace mechanisms are applied to both queries and the threshold. In our model, the database is discrete and instead the geometric mechanisms are applied.
We consider the database set $D = \{0,1\ldots,5\}$, a threshold $t \in \{0,1\ldots,5\}$, and queries $\{f| f $ with sensitivity $\Delta (f) = 1 \}$. In order to protect privacy, truncated $\alpha$-geometric mechanisms over $\{0,1\ldots,5\}$ are applied to each query and the threshold, and what we observe is the first time that a query result is greater than or equal to the threshold after interference. We are interested in the differentially private property of the data in $D$, assuming that a pair of data $d,d'$are neighbours, if $|d-d'|\le 1$. The algorithm is shown in Algorithm~\ref{algorithm:online-model} and a property will be specefied in Section~\ref{section:specifying-properties}.