forked from steinwurf/storage-benchmarks
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathplot_storage_helper.py
217 lines (172 loc) · 7.3 KB
/
plot_storage_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# -*- coding: utf-8 -*-
"""
Created on Fri Sep 12 20:41:09 2014
@author: nestor
"""
import matplotlib.pyplot as plt
import scipy as sp
from matplotlib.backends.backend_pdf import PdfPages as pp
xlabel_names = { 'symbol_size' : r"$Symbol\ Size\ [KB]$",
'symbols' : r"$Symbols$",
'loss_rate' : r"$Loss\ Rate\ [\%]$",
'erased_symbols' : r"$Erased\ Symbols$"
}
ylabel_names = { 'goodput' : r"$Goodput\ [MB/s]$",
'extra_symbols' : r"$Average\ Extra\ Symbols$"
}
title_names = { 'symbol_size' : r"$\ Packet\ size\colon\ $",
'symbols' : r"$\ Symbols\colon\ $",
'loss_rate' : r"$\ Loss\ rate\colon\ $",
'type' : r"$\ Device\colon\ $"
}
label_names = { u'(OpenFEC, 1.0)' : "$OpenFEC-LDPC$",
u'(Perpetual, 0.2652)' : "$Kodo-Perpetual,\ w_r =\ 0.2652$",
u'(Perpetual, 0.375)' : "$Kodo-Perpetual,\ w_r =\ 0.375$",
u'(Perpetual, 0.5303)' : "$Kodo-Perpetual,\ w_r =\ 0.5303$",
u'(SparseFullRLNC, 0.3)' : "$Kodo-Sparse\ RLNC,\ d =\ 0.3$",
u'(SparseFullRLNC, 0.4)' : "$Kodo-Sparse\ RLNC,\ d =\ 0.4$",
u'(SparseFullRLNC, 0.5)' : "$Kodo-Sparse\ RLNC,\ d =\ 0.5$",
u'(SparseThread, 0.3)' : "$Kodo-Sparse\ Threading,\ d =\ 0.3$",
u'(SparseThread, 0.4)' : "$Kodo-Sparse\ Threading,\ d =\ 0.4$",
u'(SparseThread, 0.5)' : "$Kodo-Sparse\ Threading,\ d =\ 0.5$",
u'(Thread, 1.0)' : "$Kodo-Threading\ RLNC$",
u'(FullRLNC, 1.0)' : "$Kodo-Full\ RLNC$",
u'(ISA, 1.0)' : "$ISA-RS$",
u'(Jerasure, 1.0)' : "$Jerasure-RS$",
}
def title_symbol_size(symbol_size):
return '$' + str(symbol_size/1000) + '\ KB.$'
def title_loss_rate(loss_rate):
return '$' + str(int(loss_rate*100)) + '\%.$'
def title_device_type(device):
return '$' + device.title() + '.$'
parameter_functions = {'symbol_size' : title_symbol_size,
'loss_rate' : title_loss_rate,
'type' : title_device_type,
}
def set_parameter(parameter,parameters_list,keys):
if parameter not in parameter_functions.keys():
return '$' + str(keys[parameters_list.index(parameter)]) + '.$'
else:
return parameter_functions[parameter](
keys[parameters_list.index(parameter)])
def get_plot_title(parameters_list,keys):
title = r''
for parameter in parameters_list:
title += title_names[parameter] + set_parameter(parameter,
parameters_list,
keys)
return title
xscale_arguments = { ('goodput','symbol_size') : ['log',dict(basex=2)],
('goodput','symbols') : ['log',dict(basex=2)],
('goodput','loss_rate') : ['linear',dict()],
('goodput','erased_symbols') : ['linear',dict()],
('extra_symbols','symbols') : ['linear',dict()]
}
symbol_size_label = { 32000 : r"$32$",
64000 : r"$64$",
128000 : r"$128$",
256000 : r"$256$",
512000 : r"$512$",
1024000 : r"$1024$"
}
symbols_label = { 8 : r"$8$",
16 : r"$16$",
32 : r"$32$",
64 : r"$64$",
128 : r"$128$",
256 : r"$256$",
512 : r"$512$"
}
loss_rate_label = { 0.05 : r"$5$",
0.1 : r"$10$",
0.15 : r"$15$",
0.2 : r"$20$",
0.25 : r"$25$",
0.3 : r"$30$"
}
erased_symbols_label = {
}
varying_xlabels = {'symbol_size' : symbol_size_label,
'symbols' : symbols_label,
'loss_rate' : loss_rate_label,
'erased_symbols' : erased_symbols_label
}
pltkind = { ('goodput','symbol_size') : 'line',
('goodput','symbols') : 'line',
('goodput','loss_rate') : 'line',
('goodput','erased_symbols') : 'bar',
('extra_symbols','symbols') : 'bar'
}
def set_axis_properties(p,metric,varying_parameter,group):
#Set major x-axis label
plt.xlabel(xlabel_names[varying_parameter])
#Set x-axis scale
xscale_args = xscale_arguments[(metric,varying_parameter)]
plt.xscale(xscale_args[0],**xscale_args[1])
#Set x-axis tick labels
#Get tick values
ticks = list(sp.unique(group[varying_parameter]))
#If an item is not in the tick dictionary for the bar plot, add it
if pltkind[(metric,varying_parameter)] is 'bar':
for item in ticks:
if item not in varying_xlabels[varying_parameter].keys():
varying_xlabels[varying_parameter][item] = '$' + str(item) +'$'
xlabels = [ varying_xlabels[varying_parameter][item] for item in ticks]
if pltkind[(metric,varying_parameter)] is 'bar':
p.set_xticks(sp.arange(len(ticks))+0.5)
plt.setp(p.set_xticklabels(xlabels), rotation=0)
else:
plt.xticks(ticks,xlabels)
plt.ylabel(ylabel_names[metric])
plt.grid('on')
def set_plot_legend(p,metric,varying_parameter):
lines, labels = p.get_legend_handles_labels()
if pltkind[(metric,varying_parameter)] is 'line':
for l in lines:
l.set_marker(markers[lines.index(l)])
for lb in labels:
labels[labels.index(lb)] = label_names[lb]
p.legend(lines,labels,loc='center left',ncol=1,fontsize='small',
bbox_to_anchor=(1, 0.5))
def get_filename(metric,varying_parameter,fixed_parameters,keys,density):
fixed_values = ""
for fixed in fixed_parameters:
fixed_values += "_" + fixed + "_" + \
str(keys[fixed_parameters.index(fixed)])
filename = density + "_" + metric + "_" + varying_parameter + \
fixed_values + ".pdf"
return filename
def plot_metric(df,metric,varying_parameter,fixed_parameters,cases,density):
df_group = df.groupby(by=fixed_parameters)
all_figures_filename = "all_" + density + "_" + metric + "_vs_" + \
varying_parameter + ".pdf"
pdf = pp(all_figures_filename)
for keys, group in df_group:
p = group.pivot_table(metric,cols=cases,rows=varying_parameter).plot(
kind=pltkind[(metric,varying_parameter)])
plt.title(get_plot_title(fixed_parameters,keys),fontsize=font_size)
set_axis_properties(p,metric,varying_parameter,group)
set_plot_legend(p,metric,varying_parameter)
filename = get_filename(metric,varying_parameter,
fixed_parameters,keys,density)
plt.savefig(filename,bbox_inches='tight')
pdf.savefig(bbox_inches='tight')
plt.close()
pdf.close()
######################## PLOTTING SETTINGS ################################
font_size=14
font = {'family' : 'sans-serif',
'weight' : 'medium',
'style' : 'normal',
'size' : font_size}
plt.rc('font', **font)
plt.rc('text', usetex=True)
plt.rc('xtick',labelsize=font_size)
plt.rc('ytick',labelsize=font_size)
colors = ['SteelBlue','DarkBlue',
'LimeGreen','DarkGreen',
'Crimson','DarkRed',
'Brown','Black']
plt.rc('axes', color_cycle = colors)
markers = ["d","+","x","^","v","s","*","h"]