-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathexperiments_msda.py
executable file
·233 lines (188 loc) · 8.37 KB
/
experiments_msda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#!/usr/bin/env python3
"""
Generates the list of which multi-source adaptation problems to perform
For each dataset, for each target user, pick n random source users (excluding
the target user) 3 different times (so we can get mean +/- stdev).
Usage: ./experiments_msda.py > experiments_msda.txt
"""
import re
import random
import datasets.datasets as datasets
def other_users(users, skip_user):
""" From the list of users, throw out skip_user """
new_users = []
for user in users:
if user != skip_user:
new_users.append(user)
return new_users
def generate_n_with_max(num_users, max_num):
""" Generate [1,2,3,...,num_users] but max out at max_num and skip as close
to evenly to get there. For example, if num_users=30 and max_num=5, we get:
[1, 7, 13, 19, 25].
"""
return list(range(1, num_users, num_users//max_num))[:max_num]
def generate_multi_source(dataset_name, users, n, repeat=3, max_users=5):
# Shrink the number of target users since otherwise we have >4000 adaptation
# problems. That will take too long and won't fit in the paper's table
# anyway.
#
# Take random set though, since IDs aren't necessarily randomized.
# Note: not using random.shuffle() since that shuffles in-place
shuffled_users = random.sample(users, len(users))
possible_target_users = shuffled_users[:max_users]
# We'll generate multi-source options for each target user
pairs = []
for target_user in possible_target_users:
already_used_target = {}
# We want several random subsets of each so we can get mean +/- stdev
for i in range(repeat):
skip = False
# Select random source domains excluding target, keep shuffling until
# we find a source set we haven't already used. The point of "repeat"
# is to get *different* subsets. If it's the same, then there's not
# much point in re-running with the exact same data.
j = 0
while True:
others = other_users(users, target_user)
random.shuffle(others)
assert n <= len(others), "cannot choose n larger than len(users)-1"
source_users = others[:n]
# Sort so if we ever use the same subset, we don't have to
# regenerate the files. Also easier to read.
source_users.sort()
if tuple(source_users) not in already_used_target:
already_used_target[tuple(source_users)] = None
break
elif j > 1000:
print("Warning: couldn't pick different set of sources",
"than previously used,",
"dataset:"+dataset_name+",",
"n:"+str(n)+",",
"user:"+str(target_user)+",",
"repeat:"+str(i))
skip = True
break
j += 1
# Skip if this "repeat" would be the same as a previous one
if skip:
continue
source_users = ",".join([str(x) for x in source_users])
pairs.append((dataset_name, source_users, str(target_user)))
return pairs
def atof(text):
""" https://stackoverflow.com/a/5967539 """
try:
retval = float(text)
except ValueError:
retval = text
return retval
def natural_keys(text):
"""
https://stackoverflow.com/a/5967539
http://nedbatchelder.com/blog/200712/human_sorting.html
(See Toothy's implementation in the comments)
float regex comes from https://stackoverflow.com/a/12643073/190597
"""
text = text[0] + text[1] # we actually are sorting tuples of strings
return [atof(c) for c in re.split(r'[+-]?([0-9]+(?:[.][0-9]*)?|[.][0-9]+)', text)]
if __name__ == "__main__":
# Sources-target pairs for training
pairs = []
uids = []
for name in datasets.list_datasets():
users = datasets.get_dataset_users(name)
# Tune on "watch_noother" not "watch"
if name == "watch":
continue
# Since sources-target aren't stored in filename anymore (too long), we
# would run into folder name conflicts if we didn't append a unique ID
# to each sources-target pair
uid = 0
# For each value of n, from 1 (single-source domain adaptation) up to
# the full number of users - 1 (since we have one for the target)
options = generate_n_with_max(len(users), 5)
for i, n in enumerate(options):
# Make this repeatable even if we change which datasets, how many
# n's we use, etc. Also nice since we end up using a subset of
# n's source domains as (n-1)'s source domains. For example,
# we get
# (dataset_name, source_users, target_user) where each is a string
# "sleep", "17", "0"
# "sleep", "17,13", "0"
# "sleep", "17,13,10", "0"
# "sleep", "17,13,10,20", "0"
random.seed(42)
# Allows extra max_users for some datasets without changin uid's
#
# TODO get rid of all this confusing code once we decide what number
# to set max_users to. If we don't need to change max_users, then
# we can just increment uid's like before.
bonus_uid = 0
max_users = 10
curr_pairs = generate_multi_source(name, users, n,
max_users=max_users)
for i, (dataset_name, source_users, target_user) in enumerate(curr_pairs):
# We want to allow increasing the number of max_users for
# wisdm_at and watch without changing the uid's of the 0-4
# targets for backwards compatibility (otherwise we have to move
# all the models around...)
set_of_five = i // 5
# before we had 0-4 (or 1-5), so do as before
if max_users == 5 or set_of_five == 0:
uids.append(uid)
uid += 1
else:
uids.append(str(uid)+"_"+str(bonus_uid))
bonus_uid += 1
pairs += curr_pairs
# Check that these make sense
print("List of adaptations we'll perform:")
for i, (dataset_name, source, target) in enumerate(pairs):
print(" ", dataset_name, source, "to", target, "uid", uids[i])
print()
#
# kamiak_{train,eval}_msda.srun
#
print("For kamiak_{train,eval}_msda.srun:")
dataset_names = []
print_uids = []
sources = []
targets = []
dataset_target_pairs = {} # for upper bounds
for i, (dataset_name, source, target) in enumerate(pairs):
dataset_names.append("\""+dataset_name+"\"")
print_uids.append(str(uids[i]))
sources.append("\""+source+"\"")
targets.append("\""+target+"\"")
# for upper bounds
pair_name = ("\""+dataset_name+"\"", "\""+target+"\"")
full_pair = ("\""+dataset_name+"\"", str(uids[i]), "\""+target+"\"")
if pair_name not in dataset_target_pairs:
dataset_target_pairs[pair_name] = full_pair
print("# number of adaptation problems =", len(sources))
print("uids=(", " ".join(print_uids), ")", sep="")
print("datasets=(", " ".join(dataset_names), ")", sep="")
print("sources=(", " ".join(sources), ")", sep="")
print("targets=(", " ".join(targets), ")", sep="")
print()
#
# kamiak_{train,eval}_msda_upper.srun
#
print("For kamiak_{train,eval}_msda_upper.srun:")
targets_unique = list(set(dataset_target_pairs.values()))
targets_unique.sort(key=natural_keys)
sources_blank = ["\"\""]*len(targets_unique)
targets_unique_uids = []
targets_unique_dataset = []
targets_unique_target = []
for dataset_name, uid, target in targets_unique:
# Uses first uid from dataset_name-target
targets_unique_uids.append(uid)
targets_unique_dataset.append(dataset_name)
targets_unique_target.append(target)
print("# number of adaptation problems =", len(targets_unique))
print("uids=(", " ".join(["u"+str(x) for x in targets_unique_uids]), ")", sep="")
print("datasets=(", " ".join(targets_unique_dataset), ")", sep="")
print("sources=(", " ".join(sources_blank), ")", sep="")
print("targets=(", " ".join(targets_unique_target), ")", sep="")
print()