From cfbca346580ae00195a17230fe900cc93f157bec Mon Sep 17 00:00:00 2001 From: Tyler Hughes Date: Wed, 20 Sep 2023 15:09:28 -0400 Subject: [PATCH] ready for 2.4.1 --- CHANGELOG.md | 18 ++++++++---------- tidy3d/schema.json | 14 +++++++------- 2 files changed, 15 insertions(+), 17 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index e6f826337..3f2fc038d 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -3,28 +3,25 @@ All notable changes to this project will be documented in this file. The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). -## [Unreleased] +## [2.4.1] - 2023-9-20 ### Added - `ModeSolverData.pol_fraction` and `ModeSolverData.pol_fraction_waveguide` properties to compute polarization fraction of modes using two different definitions. - `ModeSolverData.to_dataframe()` and `ModeSolverData.modes_info` for a convenient summary of various modal properties of the computed modes. -- Loss upper bound estimation in PoleResidue material model. +- Loss upper bound estimation in `PoleResidue` material model. ### Changed - Output task URL before and after simulation run and make URLs blue underline formatting. -- Support to load and save compressed HDF5 files (`.hdf5.gz`) directly from `BaseModel`. -- No longer print line numbers in webapi log output. +- Support to load and save compressed HDF5 files (`.hdf5.gz`) directly from `Tidy3dBaseModel`. +- Line numbers no longer printed in webapi log output. +- Empty list returned if the folder cannot be queried in `web.get_tasks()`. ### Fixed -- Filtering based on `ModeSpec.filter_pol` now uses the user-exposed `ModeSolverData.pol_fraction` property. This also fixes the previous internal handling which was not taking -the nonuniform grid, as well as and the propagation axis direction for modes in angled waveguides. In practice, the results should be similar in most cases. +- Filtering based on `ModeSpec.filter_pol` now uses the user-exposed `ModeSolverData.pol_fraction` property. This also fixes the previous internal handling which was not taking the nonuniform grid, as well as and the propagation axis direction for modes in angled waveguides. In practice, the results should be similar in most cases. - Bug with truly anisotropic `JaxCustomMedium` in adjoint plugin. - Bug in adjoint plugin when `JaxBox` is less than 1 grid cell thick. - Bug in `adjoint` plugin where `JaxSimulation.structures` did not accept structures containing `td.PolySlab`. -- Return empty list if the folder cannot be queried in `web.get_tasks()`. -### Fixed -- Filtering based on `ModeSpec.filter_pol` now uses the user-exposed `ModeSolverData.pol_fraction` property. This also fixes the previous internal handling which was not taking the nonuniform grid, as well as and the propagation axis direction for modes in angled waveguides. In practice, the results should be similar in most cases. ## [2.4.0] - 2023-9-11 @@ -942,7 +939,8 @@ which fields are to be projected is now determined automatically based on the me - Job and Batch classes for better simulation handling (eventually to fully replace webapi functions). - A large number of small improvements and bug fixes. -[Unreleased]: https://github.com/flexcompute/tidy3d/compare/v2.4.0...develop +[Unreleased]: https://github.com/flexcompute/tidy3d/compare/v2.4.1...develop +[2.4.1]: https://github.com/flexcompute/tidy3d/compare/v2.4.0...v2.4.1 [2.4.0]: https://github.com/flexcompute/tidy3d/compare/v2.3.3...v2.4.0 [2.3.3]: https://github.com/flexcompute/tidy3d/compare/v2.3.2...v2.3.3 [2.3.2]: https://github.com/flexcompute/tidy3d/compare/v2.3.1...v2.3.2 diff --git a/tidy3d/schema.json b/tidy3d/schema.json index 5a8ab24c3..b14e90595 100644 --- a/tidy3d/schema.json +++ b/tidy3d/schema.json @@ -1,6 +1,6 @@ { "title": "Simulation", - "description": "Contains all information about Tidy3d simulation.\n\nParameters\n----------\ncenter : Tuple[float, float, float] = (0.0, 0.0, 0.0)\n [units = um]. Center of object in x, y, and z.\nsize : Tuple[NonNegativeFloat, NonNegativeFloat, NonNegativeFloat]\n [units = um]. Size in x, y, and z directions.\nrun_time : PositiveFloat\n [units = sec]. Total electromagnetic evolution time in seconds. Note: If simulation 'shutoff' is specified, simulation will terminate early when shutoff condition met. \nmedium : Union[Medium, AnisotropicMedium, PECMedium, PoleResidue, Sellmeier, Lorentz, Debye, Drude, FullyAnisotropicMedium, CustomMedium, CustomPoleResidue, CustomSellmeier, CustomLorentz, CustomDebye, CustomDrude, CustomAnisotropicMedium, PerturbationMedium, PerturbationPoleResidue] = Medium(name=None, frequency_range=None, allow_gain=False, nonlinear_spec=None, type='Medium', permittivity=1.0, conductivity=0.0)\n Background medium of simulation, defaults to vacuum if not specified.\nsymmetry : Tuple[Literal[0, -1, 1], Literal[0, -1, 1], Literal[0, -1, 1]] = (0, 0, 0)\n Tuple of integers defining reflection symmetry across a plane bisecting the simulation domain normal to the x-, y-, and z-axis at the simulation center of each axis, respectively. Each element can be ``0`` (no symmetry), ``1`` (even, i.e. 'PMC' symmetry) or ``-1`` (odd, i.e. 'PEC' symmetry). Note that the vectorial nature of the fields must be taken into account to correctly determine the symmetry value.\nstructures : Tuple[Structure, ...] = ()\n Tuple of structures present in simulation. Note: Structures defined later in this list override the simulation material properties in regions of spatial overlap.\nsources : Tuple[Annotated[Union[tidy3d.components.source.UniformCurrentSource, tidy3d.components.source.PointDipole, tidy3d.components.source.GaussianBeam, tidy3d.components.source.AstigmaticGaussianBeam, tidy3d.components.source.ModeSource, tidy3d.components.source.PlaneWave, tidy3d.components.source.CustomFieldSource, tidy3d.components.source.CustomCurrentSource, tidy3d.components.source.TFSF], FieldInfo(default=PydanticUndefined, discriminator='type', extra={})], ...] = ()\n Tuple of electric current sources injecting fields into the simulation.\nboundary_spec : BoundarySpec = BoundarySpec(x=Boundary(plus=PML(name=None,, type='PML',, num_layers=12,, parameters=PMLParams(sigma_order=3,, sigma_min=0.0,, sigma_max=1.5,, type='PMLParams',, kappa_order=3,, kappa_min=1.0,, kappa_max=3.0,, alpha_order=1,, alpha_min=0.0,, alpha_max=0.0)),, minus=PML(name=None,, type='PML',, num_layers=12,, parameters=PMLParams(sigma_order=3,, sigma_min=0.0,, sigma_max=1.5,, type='PMLParams',, kappa_order=3,, kappa_min=1.0,, kappa_max=3.0,, alpha_order=1,, alpha_min=0.0,, alpha_max=0.0)),, type='Boundary'), y=Boundary(plus=PML(name=None,, type='PML',, num_layers=12,, parameters=PMLParams(sigma_order=3,, sigma_min=0.0,, sigma_max=1.5,, type='PMLParams',, kappa_order=3,, kappa_min=1.0,, kappa_max=3.0,, alpha_order=1,, alpha_min=0.0,, alpha_max=0.0)),, minus=PML(name=None,, type='PML',, num_layers=12,, parameters=PMLParams(sigma_order=3,, sigma_min=0.0,, sigma_max=1.5,, type='PMLParams',, kappa_order=3,, kappa_min=1.0,, kappa_max=3.0,, alpha_order=1,, alpha_min=0.0,, alpha_max=0.0)),, type='Boundary'), z=Boundary(plus=PML(name=None,, type='PML',, num_layers=12,, parameters=PMLParams(sigma_order=3,, sigma_min=0.0,, sigma_max=1.5,, type='PMLParams',, kappa_order=3,, kappa_min=1.0,, kappa_max=3.0,, alpha_order=1,, alpha_min=0.0,, alpha_max=0.0)),, minus=PML(name=None,, type='PML',, num_layers=12,, parameters=PMLParams(sigma_order=3,, sigma_min=0.0,, sigma_max=1.5,, type='PMLParams',, kappa_order=3,, kappa_min=1.0,, kappa_max=3.0,, alpha_order=1,, alpha_min=0.0,, alpha_max=0.0)),, type='Boundary'), type='BoundarySpec')\n Specification of boundary conditions along each dimension. If ``None``, PML boundary conditions are applied on all sides.\nmonitors : Tuple[Annotated[Union[tidy3d.components.monitor.FieldMonitor, tidy3d.components.monitor.FieldTimeMonitor, tidy3d.components.monitor.PermittivityMonitor, tidy3d.components.monitor.FluxMonitor, tidy3d.components.monitor.FluxTimeMonitor, tidy3d.components.monitor.ModeMonitor, tidy3d.components.monitor.ModeSolverMonitor, tidy3d.components.monitor.FieldProjectionAngleMonitor, tidy3d.components.monitor.FieldProjectionCartesianMonitor, tidy3d.components.monitor.FieldProjectionKSpaceMonitor, tidy3d.components.monitor.DiffractionMonitor], FieldInfo(default=PydanticUndefined, discriminator='type', extra={})], ...] = ()\n Tuple of monitors in the simulation. Note: monitor names are used to access data after simulation is run.\ngrid_spec : GridSpec = GridSpec(grid_x=AutoGrid(type='AutoGrid',, min_steps_per_wvl=10.0,, max_scale=1.4,, dl_min=0.0,, mesher=GradedMesher(type='GradedMesher')), grid_y=AutoGrid(type='AutoGrid',, min_steps_per_wvl=10.0,, max_scale=1.4,, dl_min=0.0,, mesher=GradedMesher(type='GradedMesher')), grid_z=AutoGrid(type='AutoGrid',, min_steps_per_wvl=10.0,, max_scale=1.4,, dl_min=0.0,, mesher=GradedMesher(type='GradedMesher')), wavelength=None, override_structures=(), type='GridSpec')\n Specifications for the simulation grid along each of the three directions.\nshutoff : NonNegativeFloat = 1e-05\n Ratio of the instantaneous integrated E-field intensity to the maximum value at which the simulation will automatically terminate time stepping. Used to prevent extraneous run time of simulations with fully decayed fields. Set to ``0`` to disable this feature.\nsubpixel : bool = True\n If ``True``, uses subpixel averaging of the permittivity based on structure definition, resulting in much higher accuracy for a given grid size.\nnormalize_index : Optional[NonNegativeInt] = 0\n Index of the source in the tuple of sources whose spectrum will be used to normalize the frequency-dependent data. If ``None``, the raw field data is returned unnormalized.\ncourant : ConstrainedFloatValue = 0.99\n Courant stability factor, controls time step to spatial step ratio. Lower values lead to more stable simulations for dispersive materials, but result in longer simulation times. This factor is normalized to no larger than 1 when CFL stability condition is met in 3D.\nversion : str = 2.4.0\n String specifying the front end version number.\n\nExample\n-------\n>>> from tidy3d import Sphere, Cylinder, PolySlab\n>>> from tidy3d import UniformCurrentSource, GaussianPulse\n>>> from tidy3d import FieldMonitor, FluxMonitor\n>>> from tidy3d import GridSpec, AutoGrid\n>>> from tidy3d import BoundarySpec, Boundary\n>>> sim = Simulation(\n... size=(3.0, 3.0, 3.0),\n... grid_spec=GridSpec(\n... grid_x = AutoGrid(min_steps_per_wvl = 20),\n... grid_y = AutoGrid(min_steps_per_wvl = 20),\n... grid_z = AutoGrid(min_steps_per_wvl = 20)\n... ),\n... run_time=40e-11,\n... structures=[\n... Structure(\n... geometry=Box(size=(1, 1, 1), center=(0, 0, 0)),\n... medium=Medium(permittivity=2.0),\n... ),\n... ],\n... sources=[\n... UniformCurrentSource(\n... size=(0, 0, 0),\n... center=(0, 0.5, 0),\n... polarization=\"Hx\",\n... source_time=GaussianPulse(\n... freq0=2e14,\n... fwidth=4e13,\n... ),\n... )\n... ],\n... monitors=[\n... FluxMonitor(size=(1, 1, 0), center=(0, 0, 0), freqs=[2e14, 2.5e14], name='flux'),\n... ],\n... symmetry=(0, 0, 0),\n... boundary_spec=BoundarySpec(\n... x = Boundary.pml(num_layers=20),\n... y = Boundary.pml(num_layers=30),\n... z = Boundary.periodic(),\n... ),\n... shutoff=1e-6,\n... courant=0.8,\n... subpixel=False,\n... )", + "description": "Contains all information about Tidy3d simulation.\n\nParameters\n----------\ncenter : Tuple[float, float, float] = (0.0, 0.0, 0.0)\n [units = um]. Center of object in x, y, and z.\nsize : Tuple[NonNegativeFloat, NonNegativeFloat, NonNegativeFloat]\n [units = um]. Size in x, y, and z directions.\nrun_time : PositiveFloat\n [units = sec]. Total electromagnetic evolution time in seconds. Note: If simulation 'shutoff' is specified, simulation will terminate early when shutoff condition met. \nmedium : Union[Medium, AnisotropicMedium, PECMedium, PoleResidue, Sellmeier, Lorentz, Debye, Drude, FullyAnisotropicMedium, CustomMedium, CustomPoleResidue, CustomSellmeier, CustomLorentz, CustomDebye, CustomDrude, CustomAnisotropicMedium, PerturbationMedium, PerturbationPoleResidue] = Medium(name=None, frequency_range=None, allow_gain=False, nonlinear_spec=None, type='Medium', permittivity=1.0, conductivity=0.0)\n Background medium of simulation, defaults to vacuum if not specified.\nsymmetry : Tuple[Literal[0, -1, 1], Literal[0, -1, 1], Literal[0, -1, 1]] = (0, 0, 0)\n Tuple of integers defining reflection symmetry across a plane bisecting the simulation domain normal to the x-, y-, and z-axis at the simulation center of each axis, respectively. Each element can be ``0`` (no symmetry), ``1`` (even, i.e. 'PMC' symmetry) or ``-1`` (odd, i.e. 'PEC' symmetry). Note that the vectorial nature of the fields must be taken into account to correctly determine the symmetry value.\nstructures : Tuple[Structure, ...] = ()\n Tuple of structures present in simulation. Note: Structures defined later in this list override the simulation material properties in regions of spatial overlap.\nsources : Tuple[Annotated[Union[tidy3d.components.source.UniformCurrentSource, tidy3d.components.source.PointDipole, tidy3d.components.source.GaussianBeam, tidy3d.components.source.AstigmaticGaussianBeam, tidy3d.components.source.ModeSource, tidy3d.components.source.PlaneWave, tidy3d.components.source.CustomFieldSource, tidy3d.components.source.CustomCurrentSource, tidy3d.components.source.TFSF], FieldInfo(default=PydanticUndefined, discriminator='type', extra={})], ...] = ()\n Tuple of electric current sources injecting fields into the simulation.\nboundary_spec : BoundarySpec = BoundarySpec(x=Boundary(plus=PML(name=None,, type='PML',, num_layers=12,, parameters=PMLParams(sigma_order=3,, sigma_min=0.0,, sigma_max=1.5,, type='PMLParams',, kappa_order=3,, kappa_min=1.0,, kappa_max=3.0,, alpha_order=1,, alpha_min=0.0,, alpha_max=0.0)),, minus=PML(name=None,, type='PML',, num_layers=12,, parameters=PMLParams(sigma_order=3,, sigma_min=0.0,, sigma_max=1.5,, type='PMLParams',, kappa_order=3,, kappa_min=1.0,, kappa_max=3.0,, alpha_order=1,, alpha_min=0.0,, alpha_max=0.0)),, type='Boundary'), y=Boundary(plus=PML(name=None,, type='PML',, num_layers=12,, parameters=PMLParams(sigma_order=3,, sigma_min=0.0,, sigma_max=1.5,, type='PMLParams',, kappa_order=3,, kappa_min=1.0,, kappa_max=3.0,, alpha_order=1,, alpha_min=0.0,, alpha_max=0.0)),, minus=PML(name=None,, type='PML',, num_layers=12,, parameters=PMLParams(sigma_order=3,, sigma_min=0.0,, sigma_max=1.5,, type='PMLParams',, kappa_order=3,, kappa_min=1.0,, kappa_max=3.0,, alpha_order=1,, alpha_min=0.0,, alpha_max=0.0)),, type='Boundary'), z=Boundary(plus=PML(name=None,, type='PML',, num_layers=12,, parameters=PMLParams(sigma_order=3,, sigma_min=0.0,, sigma_max=1.5,, type='PMLParams',, kappa_order=3,, kappa_min=1.0,, kappa_max=3.0,, alpha_order=1,, alpha_min=0.0,, alpha_max=0.0)),, minus=PML(name=None,, type='PML',, num_layers=12,, parameters=PMLParams(sigma_order=3,, sigma_min=0.0,, sigma_max=1.5,, type='PMLParams',, kappa_order=3,, kappa_min=1.0,, kappa_max=3.0,, alpha_order=1,, alpha_min=0.0,, alpha_max=0.0)),, type='Boundary'), type='BoundarySpec')\n Specification of boundary conditions along each dimension. If ``None``, PML boundary conditions are applied on all sides.\nmonitors : Tuple[Annotated[Union[tidy3d.components.monitor.FieldMonitor, tidy3d.components.monitor.FieldTimeMonitor, tidy3d.components.monitor.PermittivityMonitor, tidy3d.components.monitor.FluxMonitor, tidy3d.components.monitor.FluxTimeMonitor, tidy3d.components.monitor.ModeMonitor, tidy3d.components.monitor.ModeSolverMonitor, tidy3d.components.monitor.FieldProjectionAngleMonitor, tidy3d.components.monitor.FieldProjectionCartesianMonitor, tidy3d.components.monitor.FieldProjectionKSpaceMonitor, tidy3d.components.monitor.DiffractionMonitor], FieldInfo(default=PydanticUndefined, discriminator='type', extra={})], ...] = ()\n Tuple of monitors in the simulation. Note: monitor names are used to access data after simulation is run.\ngrid_spec : GridSpec = GridSpec(grid_x=AutoGrid(type='AutoGrid',, min_steps_per_wvl=10.0,, max_scale=1.4,, dl_min=0.0,, mesher=GradedMesher(type='GradedMesher')), grid_y=AutoGrid(type='AutoGrid',, min_steps_per_wvl=10.0,, max_scale=1.4,, dl_min=0.0,, mesher=GradedMesher(type='GradedMesher')), grid_z=AutoGrid(type='AutoGrid',, min_steps_per_wvl=10.0,, max_scale=1.4,, dl_min=0.0,, mesher=GradedMesher(type='GradedMesher')), wavelength=None, override_structures=(), type='GridSpec')\n Specifications for the simulation grid along each of the three directions.\nshutoff : NonNegativeFloat = 1e-05\n Ratio of the instantaneous integrated E-field intensity to the maximum value at which the simulation will automatically terminate time stepping. Used to prevent extraneous run time of simulations with fully decayed fields. Set to ``0`` to disable this feature.\nsubpixel : bool = True\n If ``True``, uses subpixel averaging of the permittivity based on structure definition, resulting in much higher accuracy for a given grid size.\nnormalize_index : Optional[NonNegativeInt] = 0\n Index of the source in the tuple of sources whose spectrum will be used to normalize the frequency-dependent data. If ``None``, the raw field data is returned unnormalized.\ncourant : ConstrainedFloatValue = 0.99\n Courant stability factor, controls time step to spatial step ratio. Lower values lead to more stable simulations for dispersive materials, but result in longer simulation times. This factor is normalized to no larger than 1 when CFL stability condition is met in 3D.\nversion : str = 2.4.1\n String specifying the front end version number.\n\nExample\n-------\n>>> from tidy3d import Sphere, Cylinder, PolySlab\n>>> from tidy3d import UniformCurrentSource, GaussianPulse\n>>> from tidy3d import FieldMonitor, FluxMonitor\n>>> from tidy3d import GridSpec, AutoGrid\n>>> from tidy3d import BoundarySpec, Boundary\n>>> sim = Simulation(\n... size=(3.0, 3.0, 3.0),\n... grid_spec=GridSpec(\n... grid_x = AutoGrid(min_steps_per_wvl = 20),\n... grid_y = AutoGrid(min_steps_per_wvl = 20),\n... grid_z = AutoGrid(min_steps_per_wvl = 20)\n... ),\n... run_time=40e-11,\n... structures=[\n... Structure(\n... geometry=Box(size=(1, 1, 1), center=(0, 0, 0)),\n... medium=Medium(permittivity=2.0),\n... ),\n... ],\n... sources=[\n... UniformCurrentSource(\n... size=(0, 0, 0),\n... center=(0, 0.5, 0),\n... polarization=\"Hx\",\n... source_time=GaussianPulse(\n... freq0=2e14,\n... fwidth=4e13,\n... ),\n... )\n... ],\n... monitors=[\n... FluxMonitor(size=(1, 1, 0), center=(0, 0, 0), freqs=[2e14, 2.5e14], name='flux'),\n... ],\n... symmetry=(0, 0, 0),\n... boundary_spec=BoundarySpec(\n... x = Boundary.pml(num_layers=20),\n... y = Boundary.pml(num_layers=30),\n... z = Boundary.periodic(),\n... ),\n... shutoff=1e-6,\n... courant=0.8,\n... subpixel=False,\n... )", "type": "object", "properties": { "type": { @@ -508,7 +508,7 @@ "version": { "title": "Version", "description": "String specifying the front end version number.", - "default": "2.4.0", + "default": "2.4.1", "type": "string" } }, @@ -4277,7 +4277,7 @@ }, "PointDipole": { "title": "PointDipole", - "description": "Uniform current source with a zero size.\n\nParameters\n----------\ncenter : Tuple[float, float, float] = (0.0, 0.0, 0.0)\n [units = um]. Center of object in x, y, and z.\nsize : Tuple[typing_extensions.Literal[0], typing_extensions.Literal[0], typing_extensions.Literal[0]] = (0, 0, 0)\n [units = um]. Size in x, y, and z directions, constrained to ``(0, 0, 0)``.\nsource_time : Union[GaussianPulse, ContinuousWave, CustomSourceTime]\n Specification of the source time-dependence.\nname : Optional[str] = None\n Optional name for the source.\ninterpolate : bool = True\n Handles reverse-interpolation of zero-size dimensions of the source. If ``False``, the source data is snapped to the nearest Yee grid point. If ``True``, equivalent source data is applied on the surrounding Yee grid points to emulate placement at the specified location using linear interpolation.\npolarization : Literal['Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz']\n Specifies the direction and type of current component.\n\nExample\n-------\n>>> pulse = GaussianPulse(freq0=200e12, fwidth=20e12)\n>>> pt_dipole = PointDipole(center=(1,2,3), source_time=pulse, polarization='Ex')", + "description": "Uniform current source with a zero size.\n\nParameters\n----------\ncenter : Tuple[float, float, float] = (0.0, 0.0, 0.0)\n [units = um]. Center of object in x, y, and z.\nsize : Tuple[Literal[0], Literal[0], Literal[0]] = (0, 0, 0)\n [units = um]. Size in x, y, and z directions, constrained to ``(0, 0, 0)``.\nsource_time : Union[GaussianPulse, ContinuousWave, CustomSourceTime]\n Specification of the source time-dependence.\nname : Optional[str] = None\n Optional name for the source.\ninterpolate : bool = True\n Handles reverse-interpolation of zero-size dimensions of the source. If ``False``, the source data is snapped to the nearest Yee grid point. If ``True``, equivalent source data is applied on the surrounding Yee grid points to emulate placement at the specified location using linear interpolation.\npolarization : Literal['Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz']\n Specifies the direction and type of current component.\n\nExample\n-------\n>>> pulse = GaussianPulse(freq0=200e12, fwidth=20e12)\n>>> pt_dipole = PointDipole(center=(1,2,3), source_time=pulse, polarization='Ex')", "type": "object", "properties": { "type": { @@ -4724,7 +4724,7 @@ }, "ModeSpec": { "title": "ModeSpec", - "description": "Stores specifications for the mode solver to find an electromagntic mode.\nNote, the planar axes are found by popping the injection axis from {x,y,z}.\nFor example, if injection axis is y, the planar axes are ordered {x,z}.\n\nParameters\n----------\nnum_modes : PositiveInt = 1\n Number of modes returned by mode solver.\ntarget_neff : Optional[PositiveFloat] = None\n Guess for effective index of the mode.\nnum_pml : Tuple[NonNegativeInt, NonNegativeInt] = (0, 0)\n Number of standard pml layers to add in the two tangential axes.\nfilter_pol : Optional[Literal['te', 'tm']] = None\n The solver always computes the ``num_modes`` modes closest to the given ``target_neff``. If ``filter_pol==None``, they are simply sorted in order of decresing effective index. If a polarization filter is selected, the modes are rearranged such that the first ``n_pol`` modes in the list are the ones with the selected polarization fraction larger than or equal to 0.5, while the next ``num_modes - n_pol`` modes are the ones where it is smaller than 0.5 (i.e. the opposite polarization fraction is larger than 0.5). Within each polarization subset, the modes are still ordered by decreasing effective index. ``te``-fraction is defined as the integrated intensity of the E-field component parallel to the first plane axis, normalized to the total in-plane E-field intensity. Conversely, ``tm``-fraction uses the E field component parallel to the second plane axis.\nangle_theta : float = 0.0\n [units = rad]. Polar angle of the propagation axis from the injection axis.\nangle_phi : float = 0.0\n [units = rad]. Azimuth angle of the propagation axis in the plane orthogonal to the injection axis.\nprecision : Literal['single', 'double'] = single\n The solver will be faster and using less memory under single precision, but more accurate under double precision.\nbend_radius : Optional[float] = None\n [units = um]. A curvature radius for simulation of waveguide bends. Can be negative, in which case the mode plane center has a smaller value than the curvature center along the tangential axis perpendicular to the bend axis.\nbend_axis : Optional[Literal[0, 1]] = None\n Index into the two tangential axes defining the normal to the plane in which the bend lies. This must be provided if ``bend_radius`` is not ``None``. For example, for a ring in the global xy-plane, and a mode plane in either the xz or the yz plane, the ``bend_axis`` is always 1 (the global z axis).\ntrack_freq : Optional[Literal['central', 'lowest', 'highest']] = central\n Parameter that turns on/off mode tracking based on their similarity. Can take values ``'lowest'``, ``'central'``, or ``'highest'``, which correspond to mode tracking based on the lowest, central, or highest frequency. If ``None`` no mode tracking is performed.\ngroup_index_step : Union[bool, PositiveFloat] = False\n Control the computation of the group index alongside the effective index. If set to a positive value, it sets the fractional frequency step used in the numerical differentiation of the effective index to compute the group index. If set to `True`, the default of 0.005 is used.\n\nExample\n-------\n>>> mode_spec = ModeSpec(num_modes=3, target_neff=1.5)", + "description": "Stores specifications for the mode solver to find an electromagntic mode.\nNote, the planar axes are found by popping the injection axis from {x,y,z}.\nFor example, if injection axis is y, the planar axes are ordered {x,z}.\n\nParameters\n----------\nnum_modes : PositiveInt = 1\n Number of modes returned by mode solver.\ntarget_neff : Optional[PositiveFloat] = None\n Guess for effective index of the mode.\nnum_pml : Tuple[NonNegativeInt, NonNegativeInt] = (0, 0)\n Number of standard pml layers to add in the two tangential axes.\nfilter_pol : Optional[Literal['te', 'tm']] = None\n The solver always computes the ``num_modes`` modes closest to the given ``target_neff``. If ``filter_pol==None``, they are simply sorted in order of decresing effective index. If a polarization filter is selected, the modes are rearranged such that the first ``n_pol`` modes in the list are the ones with the selected polarization fraction larger than or equal to 0.5, while the next ``num_modes - n_pol`` modes are the ones where it is smaller than 0.5 (i.e. the opposite polarization fraction is larger than 0.5). Within each polarization subset, the modes are still ordered by decreasing effective index. ``te``-fraction is defined as the integrated intensity of the E-field component parallel to the first plane axis, normalized to the total in-plane E-field intensity. Conversely, ``tm``-fraction uses the E field component parallel to the second plane axis.\nangle_theta : float = 0.0\n [units = rad]. Polar angle of the propagation axis from the injection axis.\nangle_phi : float = 0.0\n [units = rad]. Azimuth angle of the propagation axis in the plane orthogonal to the injection axis.\nprecision : Literal['single', 'double'] = single\n The solver will be faster and using less memory under single precision, but more accurate under double precision.\nbend_radius : Optional[float] = None\n [units = um]. A curvature radius for simulation of waveguide bends. Can be negative, in which case the mode plane center has a smaller value than the curvature center along the tangential axis perpendicular to the bend axis.\nbend_axis : Optional[Literal[0, 1]] = None\n Index into the two tangential axes defining the normal to the plane in which the bend lies. This must be provided if ``bend_radius`` is not ``None``. For example, for a ring in the global xy-plane, and a mode plane in either the xz or the yz plane, the ``bend_axis`` is always 1 (the global z axis).\ntrack_freq : Optional[Literal['central', 'lowest', 'highest']] = central\n Parameter that turns on/off mode tracking based on their similarity. Can take values ``'lowest'``, ``'central'``, or ``'highest'``, which correspond to mode tracking based on the lowest, central, or highest frequency. If ``None`` no mode tracking is performed.\ngroup_index_step : Union[PositiveFloat, bool] = False\n Control the computation of the group index alongside the effective index. If set to a positive value, it sets the fractional frequency step used in the numerical differentiation of the effective index to compute the group index. If set to `True`, the default of 0.005 is used.\n\nExample\n-------\n>>> mode_spec = ModeSpec(num_modes=3, target_neff=1.5)", "type": "object", "properties": { "num_modes": { @@ -4825,12 +4825,12 @@ "description": "Control the computation of the group index alongside the effective index. If set to a positive value, it sets the fractional frequency step used in the numerical differentiation of the effective index to compute the group index. If set to `True`, the default of 0.005 is used.", "default": false, "anyOf": [ - { - "type": "boolean" - }, { "type": "number", "exclusiveMinimum": 0 + }, + { + "type": "boolean" } ] },