-
Notifications
You must be signed in to change notification settings - Fork 148
/
initialize_components.m
165 lines (145 loc) · 6.61 KB
/
initialize_components.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
function [Ain, Cin, bin, fin, center] = initialize_components(Y, K, tau, options, P)
% Initalize components using a greedy approach followed by hierarchical
% alternative least squares (HALS) NMF. Optional use of spatio-temporal
% downsampling to boost speed.
%Input:
%Y d1 x d2 x T movie, raw data
%K number of neurons to extract (default value: 30)
%tau standard deviation of neuron size (default value: 5)
%options fine-tuning parameters (optional)
% options.init_method: method of initialization ('greedy','sparse_NMF','HALS')
% options.
% options.nIter: number of iterations for shape tuning (default 5)
% options.gSiz: size of kernel (default 2*tau + 1)
% options.ssub: spatial downsampling factor (default 1)
% options.tsub: temporal downsampling factor (default 1)
% options.nb: rank of background component (default 1)
% options.save_memory: flag for processing data in chunks to save memory (default 0)
% options.windowSiz: size of spatial window when computing the median (default 32 x 32)
% options.chunkSiz: number of timesteps to be processed simultaneously if on save_memory mode (default: 100)
% options.med_app: number of timesteps to be interleaved for fast (approximate) median calculation (default: 1, no approximation)
% options.rem_prct: percentile to be removed before initialization (default: 20)
% P parameter struct used for normalization by noise and user feed component centroids (optional)
%
%Output:
%Ain (d1*d2) x K matrix, location of each neuron
%Cin T x K matrix, calcium activity of each neuron
%center K x 2 matrix, inferred center of each neuron
%bin (d1*d2) X nb matrix, initialization of spatial background
%fin nb X T matrix, initalization of temporal background
%res d1 x d2 x T movie, residual
%
%Authors: Eftychios A. Pnevmatikakis and Pengchen Zhou, with inputs from Weijian Yang
defoptions = CNMFSetParms;
if nargin < 4 || isempty(options); options = defoptions; end
if nargin < 2 || isempty(K)
K = 30;
fprintf('Number of components to be detected not specified. Using the default value 30. \n');
end
if nargin < 3 || isempty(tau)
options.gSig = 5;
fprintf('Standard deviation for neuron not specified. Using the default value 5. \n');
else options.gSig = tau;
end
if ~isfield(options,'init_method'); options.init_method = 'greedy'; end
if ~isfield(options,'rem_prct') || isempty(options.rem_prct); options.rem_prct = defoptions.rem_prct; end
% downsample the data
if ~isfield(options, 'ssub'); options.ssub = 1; end; ssub = options.ssub;
if ssub == 1; fprintf('No spatial downsampling is performed. Consider spatial downsampling if the field of view is very large. \n'); end
if ~isfield(options, 'tsub'), options.tsub = 1; end; tsub = options.tsub;
if tsub == 1; fprintf('No temporal downsampling is performed. Consider temporal downsampling if the recording is very long. \n'); end
if ~isfield(options,'noise_norm') || isempty(options.noise_norm)
options.noise_norm = defoptions.noise_norm; % normalization by noise (true if P is present)
end
if nargin < 5
if options.noise_norm
warning('Normalization by noise value is not performed since noise values are not provided. \n');
end
options.noise_norm = false;
end
ndimsY = ndims(Y)-1;
sY = size(Y);
d = sY(1:ndimsY);
T = sY(end);
if options.noise_norm
mY = mean(Y,ndims(Y));
norm_image = mY + median(mY(:)) + 1e-4;
min_noise = norm_image;
%min_noise = prctile(P.sn(P.sn>0),options.noise_norm_prctile);
%Y = bsxfun(@times,Y,reshape(1./max(P.sn,min_noise),d));
Y = bsxfun(@times,Y,reshape(1./double(min_noise),d));
end
ds = d;
ds(1:2) = ceil(d(1:2)/ssub); % do not subsample along z axis
%d1s = ceil(d1/ssub); %size of downsampled image
%d2s = ceil(d2/ssub);
Ts = floor(T/tsub); %reduced number of frames
% spatial downsampling
fprintf('starting resampling \n')
if ssub~=1;
if ndimsY == 2; Y_ds = imresize(Y, [ds(1), ds(2)], 'box'); end
if ndimsY == 3;
Y_ds = zeros([ds(1:2),T,ds(end)]);
for z = 1:ds(3)
Y_ds(:,:,:,z) = imresize(squeeze(Y(:,:,z,:)), [ds(1), ds(2)], 'box');
end
Y_ds = permute(Y_ds,[1,2,4,3]);
end
else
Y_ds = Y;
end
% temporal downsampling
if tsub~=1
if ndimsY == 2; Y_ds = squeeze(mean(reshape(Y_ds(:, :, 1:(Ts*tsub)),ds(1), ds(2), tsub, Ts), 3)); end
if ndimsY == 3; Y_ds = squeeze(mean(reshape(Y_ds(:, :, :, 1:(Ts*tsub)),ds(1), ds(2), ds(3), tsub, Ts), 4)); end
end
options_ds = options;
options_ds.d1 = ds(1);
options_ds.d2 = ds(2);
if strcmpi(options.init_method,'greedy')
% run greedy method
if nargin < 5 || ~isfield(P,'ROI_list')
ROI_list = [];
else
ROI_list = round(P.ROI_list/ssub);
K = size(ROI_list,1);
end
fprintf('Initializing components with greedy method \n');
[Ain, Cin, bin, fin] = greedyROI(Y_ds, K, options, ROI_list);
elseif strcmpi(options.init_method, 'greedy_corr')
fprintf('Initializing components with greedy_corr method \n');
[Ain, Cin, bin, fin] = greedyROI_corr(Y_ds, K, options);
elseif strcmpi(options.init_method,'sparse_NMF')
% run sparse_NMF method
fprintf('Initializing components with sparse NMF \n');
[Ain,Cin,bin,fin] = sparse_NMF_initialization(Y_ds,K,options_ds);
elseif strcmpi(options.init_method,'HALS')
fprintf('Initializing components with HALS \n');
[Ain,Cin,bin,fin] = HALS_initialization(Y_ds,K,options_ds);
else
error('Unknown initialization method')
end
% refine with HALS
fprintf('Refining initial estimates with HALS...');
[Ain, Cin, bin, fin] = HALS(Y_ds, full(Ain), Cin, bin, fin, options_ds);
fprintf(' done \n');
%% upsample Ain, Cin, bin, fin
if nargout == 5
if ndimsY == 2; center = ssub*com(Ain,ds(1),ds(2)); else center = ssub*com(Ain,ds(1),ds(2),ds(3)); end
end
Ain = imresize(reshape(full(Ain), [ds(1),ds(2), size(Ain,2)*prod(ds)/ds(1)/ds(2)]),[d(1),d(2)]); %,prod(d)/d(1)/d(2)*sum(K)]);
Ain = max(sparse(reshape(Ain, prod(d), [])),0);
bin = imresize(reshape(bin,[ds(1),ds(2), options.nb*prod(ds)/ds(1)/ds(2)]),[d(1),d(2)]);
bin = max(double(reshape(bin,prod(d),[])),0);
if options.noise_norm
%Ain = bsxfun(@times,Ain,double(max(P.sn(:),min_noise)));
%bin = bsxfun(@times,bin,max(P.sn(:),min_noise));
Ain = bsxfun(@times,Ain,double(min_noise(:)));
bin = bsxfun(@times,bin,double(min_noise(:)));
end
Cin = max(imresize(Cin, [size(Cin, 1), Ts*tsub]),0);
fin = max(imresize(fin, [options.nb, Ts*tsub]),0);
if T ~= Ts*tsub
Cin = padarray(Cin, [0, T-Ts*tsub], 'post');
fin = padarray(fin, [0, T-Ts*tsub], fin(end), 'post');
end