-
Notifications
You must be signed in to change notification settings - Fork 14
/
seq2pat.py
814 lines (626 loc) · 33.4 KB
/
seq2pat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
# -*- coding: utf-8 -*-
# SPDX-License-Identifier: Apache-2.0
import gc
import numpy as np
from typing import NamedTuple, List, Dict, NoReturn, Optional, Tuple
from multiprocessing import Process, Queue
from copy import deepcopy
from joblib import Parallel, delayed
from sequential.backend import seq_to_pat as stp
from sequential.utils import Num, check_true, get_max_column_size, \
get_min_value, get_max_value, sort_pattern, item_map, \
string_to_int, int_to_string, check_sequence_feature_same_length, \
validate_attribute_values, validate_sequences, validate_max_span, \
aggregate_patterns, validate_min_frequency, validate_batch_args, update_min_frequency
from sequential._version import __author__, __copyright__, __email__, __version__
__author__ = __author__
__copyright__ = __copyright__
__email__ = __email__
__version__ = __version__
# IMPORTANT: Constant values should not be changed
# These represent parameters in C++ backend that need to be set by matching exact names
class _Constants:
# List where values correspond to the value of upper gap constraints on an attribute, and
# whose id can be found in ugapi at the same index
ugap = 'ugap'
# List where values are attribute ids of attributes that have upper gap constraints, and
# where the value of the constraint can be found in ugap at the same index
ugapi = 'ugapi'
# List where values correspond to the value of lower gap constraints on an attribute, and
# whose id can be found in lgapi at the same index
lgap = 'lgap'
# List where values values are attribute ids of attributes that have lower gap constraints, and
# where the value of the constraint can be found in lgap at the same index
lgapi = 'lgapi'
# List where values correspond to the value of lower average constraints on an attribute, and
# whose id can be found in lavri at the same index
lavr = 'lavr'
# List where values values are attribute ids of attributes that have lower average constraints, and
# where the value of the constraint can be found in lavr at the same index
lavri = 'lavri'
# List where values correspond to the value of upper average constraints on an attribute, and
# whose id can be found in uavri at the same index
uavr = 'uavr'
# List where values values are attribute ids of attributes that have upper average constraints, and
# where the value of the constraint can be found in uavr at the same index
uavri = 'uavri'
# List where values correspond to the value of lower span constraints on an attribute, and
# whose id can be found in lspni at the same index
lspn = 'lspn'
# List where values values are attribute ids of attributes that have lower span constraints, and
# where the value of the constraint can be found in lspn at the same index
lspni = 'lspni'
# List where values correspond to the value of lower span constraints on an attribute, and
# whose id can be found in uspni at the same index
uspn = 'uspn'
# List where values values are attribute ids of attributes that have upper span constraints, and
# where the value of the constraint can be found in uspn at the same index
uspni = 'uspni'
# List where values correspond to the value of lower median constraints on an attribute, and
# whose id can be found in lmedi at the same index
lmed = 'lmed'
# List where values correspond to the value of upper median constraints on an attribute, and
# whose id can be found in umedi at the same index
umed = 'umed'
# List where values values are attribute ids of attributes that have upper median constraints, and
# where the value of the constraint can be found in umed at the same index
umedi = 'umedi'
# List where values values are attribute ids of attributes that have upper median constraints, and
# where the value of the constraint can be found in lmed at the same index
lmedi = 'lmedi'
# List where the indexes correspond to the attribute ids and values correspond to the number of
# upper span constraints on that attribute
num_minmax = 'num_minmax'
# List where the indexes correspond to the attribute ids and the values correspond to the number of
# average constraints on that attribute
num_avr = 'num_avr'
# List where the indexes correspond to the attribute ids and values correspond to the number of
# median constraints on that attribute
num_med = 'num_med'
# List where values are attribute ids of attribute that have gap constraints
tot_gap = 'tot_gap'
# List where values are attribute ids of attribute that have span constraints
tot_spn = 'tot_spn'
# List where values are attribute ids of attribute that have average constraints
tot_avr = 'tot_avr'
# Number of attributes that constraint are enforced on
num_att = 'num_att'
# List of sequences that will be mined for sequences
items = 'items'
# List of attributes that constraints will be imposed on during mining
attrs = 'attrs'
# Length of the largest sequence in items
M = 'M'
# Number of sequences in items
N = 'N'
# If integer sequences, the largest value, if string sequences the number of events
L = 'L'
# List where index correspond to attribute ids and values to the maximum value for that attribute
max_attrs = 'max_attrs'
# List where index correspond to the attribute ids and values to the minimum value for that attribute
min_attrs = 'min_attrs'
# The data size threshold to dynamically decide if batch processing is needed to ease mining task
dynamic_batch_threshold = 500000
# If batch_size is not set while the dataset has more than dynamic_batch_threshold sequences,
# batch_size is set to be default_batch_size, to apply batch processing
default_batch_size = 10000
# Default seed to define a random state
default_seed = 123456
class Attribute:
def __init__(self, values: List[list]):
"""Attribute with given values.
Attributes
----------
values: List[list]
A list of lists corresponding to the values of each event.
"""
# Validate input values
validate_attribute_values(values)
self._values = values
self._max = get_max_value(values)
self._min = get_min_value(values)
@property
def values(self):
"""Values
The values of the attribute
"""
return self._values
def _set_values(self, values):
"""Set values of attribute
This function is used when Seq2Pat runs on batches of sequences. In each batch, the attributes and constraints
need to be reset to be consistent to the sequences. Since the upper and lower bound are set on the entire set,
it would be easier to copy the existing constraints but only reset the attribute values in a batch. It would be
prevented to set values directly, thus we add the function to reset the attribute values.
"""
self._values = values
def average(self):
"""The Average Constraint
Restricts the average value of a pattern.
"""
return _Constraint.Average(self)
def gap(self):
"""The Gap Constraint
Restricts the difference between every two consecutive event values in a pattern.
"""
return _Constraint.Gap(self)
def median(self):
"""The Median Constraint
Restricts the median value of a pattern.
"""
return _Constraint.Median(self)
def span(self):
"""The Span Constraint
Restricts the difference between the maximum and the minimum value in a pattern.
"""
return _Constraint.Span(self)
class _BaseConstraint:
def __init__(self, attribute: Attribute):
self._attribute = attribute
self._lower_bound = None
self._upper_bound = None
@property
def attribute(self):
return self._attribute
@property
def lower_bound(self):
return self._lower_bound
@property
def upper_bound(self):
return self._upper_bound
def has_lower_bound(self):
return self.lower_bound is not None
def has_upper_bound(self):
return self.upper_bound is not None
def check_satisfaction(self, value):
# Initialize returned results. When there are no constraints, result is explicitly set to be true.
res = True
if self.has_upper_bound():
if value > self.upper_bound:
return False
if self.has_lower_bound():
if value < self.lower_bound:
return False
return res
def __le__(self, other):
self._upper_bound = other
return self
def __ge__(self, other):
self._lower_bound = other
return self
class _Constraint(NamedTuple):
class Average(_BaseConstraint):
def __init__(self, attribute: Attribute):
super().__init__(attribute)
class Gap(_BaseConstraint):
def __init__(self, attribute: Attribute):
super().__init__(attribute)
def check_satisfaction(self, value):
# Initialize returned results to be true.
res = True
if self.has_upper_bound():
if max(value) > self.upper_bound:
return False
if self.has_lower_bound():
if min(value) < self.lower_bound:
return False
return res
class Median(_BaseConstraint):
def __init__(self, attribute: Attribute):
super().__init__(attribute)
class Span(_BaseConstraint):
def __init__(self, attribute: Attribute):
super().__init__(attribute)
class Seq2Pat:
"""**Seq2Pat: Sequence-to-Pattern Generation Library**
Attributes
----------
sequences: List[list]
A list of sequences each with a list of events.
The event values can be all strings or all integers.
max_span: Optional[int]
The value for applying a built-in maximum span constraint to the length of items in mining, max_span=10 by
default (10 items). This is going to avoid regular users to run into a scaling issue when data contains long
sequences but no constraints are used to run the mining efficiently and practically.
Power users can choose to drop this constraint by setting it to be None or increase the maximum span
as the system has resources to support.
batch_size: Optional[int]
The batch_size parameter is set to be None by default, then a mining task runs on the entire data set using a
single thread. When batch_size is set, Seq2Pat runs on batches of sequences instead for improving scalability.
Each batch contains `batch_size` sequences as a **random** sample of entire set. This is achieved by shuffling
the entire set uniformly before we sequentially split the sequences into batches. A mining task will run on each
batch with a reduced minimum row count (min_frequency) threshold. Please refer to description of discount_factor
parameter for how min_frequency is reduced. Resulted patterns will be aggregated from the mining results of
each batch by calculating the sum of the occurrences. Finally the original minimum row count threshold is
applied to the patterns after aggregation. When batch_size is None but the dataset has more than
_Constants.dynamic_batch_threshold sequences, batch_size is dynamically set to be _Constants.default_batch_size to
ease the mining task on the large dataset by default. Power users can define specific batch_size,
discount_factor and n_jobs for gaining more runtime benefit.
discount_factor: float
A discount factor is used to reduce the minimum row count (min_frequency) threshold when Seq2Pat is applied
on a batch. The new threshold for a batch is defined to be max(min_frequency * discount_factor, 1.0/batch_size),
where an integer min_frequency will be converted to a ratio first by min_frequency/number_total_sequences.
Final results will be based on the aggregation of patterns from each batch by calculating the sum of the
occurrences. Theoretically there is a chance that the batching results will be different from non-batching
results. But a small discount_factor parameter will make the chance to be minimal and thus we have the same
results as running on entire set in practices. A small value of discount_factor is thus recommended.
discount_factor=0.2 by default.
n_jobs: int
n_jobs defines the number of processes (n_jobs=2 by default) that are used when mining tasks are applied
on batches in parallel. If -1 all CPUs are used. If -2, all CPUs but one are used.
seed: int
Random seed to make sequences uniformly distributed among batches.
Note
----
For power users who have interests to learn more about the designed batch processing behavior, an Experimental\
Results Summary in the following would be useful.
- We have experimental analysis for batch_size vs. discount_factor vs. runtime tested on a data set with \
100k sequences.
- The results show that when batch_size increases, e.g. from 10000 to 100000, we observe an increase in runtime,\
while the mined patterns are all the same as mining on the entire set using single thread.
- When batch_size=10000, we get the most runtime benefit compared to running on entire set.
- On the same 100k sequences, we set batch_size=10000 and change discount_factor from 0.1 to 1.0. We observe\
that the runtime decreases as discount_factor increases. Only when discount_factor=1.0, the batching mode will\
miss some patterns compared to running on entire set. We would recommend discount_factor=0.2 by default for\
the robustness in results, at the expenses of runtime.
- In an even larger test on ~1M sequences, we set batch_size=10000, discount_factor=0.8, n_jobs=8.\
Batch mode saves 60% of the runtime compared to running on entire set, while the resulted patterns from the\
two processes are the same.
- When data size is small, e.g., a few thousand sequences, there is no benefit to run batch mode.\
Thus, we would recommend using the batch mode only when data has at least hundreds of thousands of sequences\
for gaining the runtime benefit.
"""
def __init__(self, sequences: List[list], max_span: Optional[int] = 10,
batch_size=None, discount_factor=0.2, n_jobs=2, seed=_Constants.default_seed):
# Validate input
validate_sequences(sequences)
validate_max_span(max_span)
validate_batch_args(batch_size, discount_factor, n_jobs, seed)
# Input sequences
self._sequences: List[list] = sequences
# Sequences as strings or integers
self._is_string = isinstance(sequences[0][0], str)
# If string, internal mapping to between strings and integers
if self._is_string:
self._str_to_int, self._int_to_str = item_map(self.sequences)
self._sequences = string_to_int(self._str_to_int, self.sequences)
# Set size variables
self._num_rows = len(self.sequences)
self._max_num_columns = get_max_column_size(self.sequences)
self._max_value = get_max_value(self.sequences)
# Constraint store: attribute_id -> constraint_name -> Constraint
self.attr_to_cts: Dict[Attribute, Dict[str, _Constraint]] = dict()
# Cython implementor object
self._cython_imp = None
if max_span:
# Create index attribute
index_attr = Attribute([[i for i in range(len(seq))] for seq in sequences])
# Add built-in maximum span constraint on index.
# The minimum span is at least 1 between two indices. Here we add it explicitly.
# Given max_span items, the maximum difference on the index is (max_span - 1)
self.add_constraint(1 <= index_attr.span() <= (max_span - 1))
# Dynamically set batch_size to ease the mining task on a large dataset by default
# If batch_size is None and num_rows > dynamic_batch_threshold, set batch_size to apply batch processing
# For dataset having num_rows <= dynamic_batch_threshold, mining task runs on entire set if batch_size=None
# Power users can define specific batch_size, discount_factor and n_jobs for gaining more runtime benefit
if not batch_size and self._num_rows > _Constants.dynamic_batch_threshold:
self.batch_size = _Constants.default_batch_size
else:
self.batch_size = batch_size
self.discount_factor = discount_factor
self.n_jobs = n_jobs
self.seed = seed
# Set an internal rng object
self._rng = np.random.default_rng(self.seed)
@property
def sequences(self) -> List[List]:
"""Sequence
The sequences of Seq2Pat.
"""
return self._sequences
def add_constraint(self, constraint: _BaseConstraint) -> _BaseConstraint:
"""Adds the given constraint to the constraint store.
Parameters
----------
constraint: _BaseConstraint
A constraint on an attribute object
Returns
-------
The constraint handle.
Raises
------
TypeError: If the constraint is already defined on this attribute.
ValueError: If there is a mismatch in length of sequences and their attributes.
"""
# Attribute and constraint id
attr_id = constraint.attribute
ct_id = constraint.__class__.__name__
# Create the attribute field, if not created already
if attr_id not in self.attr_to_cts:
self.attr_to_cts[attr_id] = dict()
# If the same constraint type exists on this attribute already, raise error
if ct_id in self.attr_to_cts[attr_id]:
raise TypeError(ct_id + " constraint is already defined on this attribute.")
# Verify that attribute
check_true(check_sequence_feature_same_length(self.sequences, constraint.attribute.values),
ValueError("Each sequence should match given attributes in event length."))
# Add the constraint
self.attr_to_cts[attr_id][ct_id] = constraint
# Return constraint handle (so that one can remove it)
return constraint
def remove_constraint(self, constraint: _BaseConstraint) -> NoReturn:
"""Removes the given constraint from the constraint store.
Parameters
----------
constraint: _BaseConstraint
A constraint on an attribute object
Raises
------
KeyError: If the given constraint does not exist in the constraint store.
"""
# Attribute and constraint id
attribute_id = constraint.attribute
constraint_id = constraint.__class__.__name__
try:
# Remove the constraint from the attribute
del self.attr_to_cts[attribute_id][constraint_id]
# If no constraint left on the attribute, remove the attribute
if len(self.attr_to_cts[attribute_id]) == 0:
del self.attr_to_cts[attribute_id]
except KeyError:
raise KeyError("No " + constraint_id + " constraint to remove on this attribute.")
def _run_thread(self, min_frequency, q):
# Cython implementor object with input parameters set
self._cython_imp = self._get_cython_imp(min_frequency)
# Frequent mining
q.put(self._cython_imp.mine())
def get_patterns(self, min_frequency: Num) -> List[list]:
"""Performs the mining operation enforcing the constraints and returns the most frequent patterns.
Parameters
----------
min_frequency: Num
If int, represents the minimum number of sequences (rows) a pattern should occur.
If float, should be (0.0, 1.0] and represents
the minimum percentage of sequences (rows) a pattern should occur.
Returns
-------
Each inner list represents a frequent pattern in the form\
[event_1, event_2, event_3, ... event_n, frequency].\
The last element is the frequency of the pattern.\
Sequences are sored by decreasing frequency, i.e., most frequent pattern first.
"""
# Check num_rows
check_true(self._num_rows >= 1, ValueError("Sequences should not be empty."))
# Check min_frequency conditions
# Given a set of `num_rows` sequences, we need to validate min_frequency.
# In edge cases when min_frequency is not set properly, e.g. 0 or less than 1/num_rows, program will fail.
validate_min_frequency(self._num_rows, min_frequency)
if not self.batch_size:
# Call Cython backend in a child process, write results to queue
q = Queue()
thread = Process(target=self._run_thread, args=(min_frequency, q))
thread.start()
# Get results from queue
patterns = q.get()
# Wait for process to finish and join the main process
thread.join()
else:
# When min_frequency is an integer, convert to float before it is applied to batches
if isinstance(min_frequency, int):
min_frequency = float(min_frequency) / len(self.sequences)
patterns = self._get_patterns_batch(min_frequency)
# Map back to strings, if original is strings
if self._is_string:
patterns = int_to_string(self._int_to_str, patterns)
# Sort sequences, most frequent pattern first
patterns_sorted = sort_pattern(patterns)
# Clean up memory
gc.collect()
# Return frequent sequences
return patterns_sorted
def _get_patterns_batch(self, min_frequency: float) -> List[list]:
"""Get patterns from each batch with a relaxed min_frequency threshold, then aggregate pattern frequencies
by using the summation of frequencies from batches.
Attributes
----------
min_frequency: float
Min_frequency should be a float in (0.0, 1.0] for batch processing.
It represents the minimum percentage of sequences (rows) a pattern should occur.
Returns
-------
List[list] where each inner list represents a frequent pattern in the form
[event_1, event_2, event_3, ... event_n, frequency].
"""
# Shuffle sequences uniformly to make each batch have similar pattern occurrences
sequences, attr_to_cs = self._shuffle_data()
# Get number of chunks
n_sequences = len(sequences)
num_chunks = n_sequences // self.batch_size
if n_sequences % self.batch_size > 0:
num_chunks += 1
# Run Seq2Pat in parallel on each chunk, with a lower min_frequency threshold to get a larger set of patterns
batch_patterns = Parallel(n_jobs=self.n_jobs, require='sharedmem')(
delayed(self._mining_batch)(i, sequences, attr_to_cs, min_frequency)
for i in range(0, num_chunks))
# Aggregate patterns from each chunk over the counts and apply min_frequency threshold
min_row_count = int(n_sequences * min_frequency)
agg_patterns = aggregate_patterns(batch_patterns, min_row_count)
return agg_patterns
def _shuffle_data(self) -> Tuple[List[List], Dict[Attribute, Dict[str, _Constraint]]]:
"""Shuffle sequences and attributes before running seq2pat on batches.
Returns
-------
shuffled_sequences: List[List]
The shuffled sequences.
shuffled_attr_to_cs: Dict[Attribute, Dict[str, _Constraint]]
The shuffled constraints.
"""
indices = list(range(len(self.sequences)))
self._rng.shuffle(indices)
shuffled_sequences = [self.sequences[i] for i in indices]
shuffled_attr_to_cts = deepcopy(self.attr_to_cts)
for attr in shuffled_attr_to_cts:
for cs in shuffled_attr_to_cts[attr]:
old_constraint = shuffled_attr_to_cts[attr][cs]
new_constraint = deepcopy(old_constraint)
shuffled_values = [old_constraint.attribute.values[i] for i in indices]
new_constraint.attribute._set_values(shuffled_values)
shuffled_attr_to_cts[attr][cs] = new_constraint
return shuffled_sequences, shuffled_attr_to_cts
def _mining_batch(self, chunk_ind: int, sequences: List[List], attr_to_cs: Dict[Attribute, Dict[str, _Constraint]],
min_frequency: float) -> List[List]:
"""Implementor of pattern mining on each batch
Attributes
----------
chunk_ind: int
chunk index
sequences: List[list]
A list of sequences each with a list of events.
The event values can be all strings or all integers.
attr_to_cs: Dict[Attribute, Dict[str, _Constraint]]
min_frequency: float
Min_frequency should be a float in (0.0, 1.0] for batch processing
It represents the minimum percentage of sequences (rows) a pattern should occur.
Returns:
-------
List[list] where each inner list represents a frequent pattern in the form
[event_1, event_2, event_3, ... event_n, frequency].
The last element is the frequency of the pattern.
Sequences are sored by decreasing frequency, i.e., most frequent pattern first.
"""
# Get one batch of sequences
batch_sequences = sequences[chunk_ind * self.batch_size:(chunk_ind + 1) * self.batch_size]
# Create seq2pat instance for one batch
batch_seq2pat = Seq2Pat(batch_sequences, max_span=None, batch_size=None)
# Create constraints for one batch
for attr in attr_to_cs:
for cs in attr_to_cs[attr]:
old_constraint = attr_to_cs[attr][cs]
new_constraint = deepcopy(old_constraint)
new_constraint.attribute._set_values(old_constraint.attribute.values[chunk_ind * self.batch_size:
(chunk_ind + 1) * self.batch_size])
batch_seq2pat.add_constraint(new_constraint)
# Reduce min_frequency to be min_frequency * discount_factor, 0 < discount_factor < 1
adjusted_min_frequency = update_min_frequency(len(batch_sequences), min_frequency,
self.discount_factor)
return batch_seq2pat.get_patterns(adjusted_min_frequency)
def _get_cython_imp(self, min_frequency) -> stp.PySeq2pat:
"""Creates and populates a Cython PySeq2Pat object based on the user inputs
by translating sequential attribute into their appropriate PySeq2Pat
representation and setting them.
:param min_frequency: the minimum number of sequences(rows) to observe the pattern
:return: PySeq2Pat object with all the necessary inputs set
"""
cython_imp = stp.PySeq2pat()
# Dictionary to hold all parameters that need to be set in seq_to_pat more information about what each
# parameter represents can be found under Constants declaration
params = {_Constants.lgap: [], _Constants.ugap: [], _Constants.lavr: [], _Constants.uavr: [],
_Constants.lspn: [],
_Constants.uspn: [], _Constants.lmed: [], _Constants.umed: [], _Constants.ugapi: [],
_Constants.lgapi: [],
_Constants.uspni: [], _Constants.lspni: [], _Constants.uavri: [], _Constants.lavri: [],
_Constants.umedi: [], _Constants.lmedi: [], _Constants.num_minmax: [], _Constants.num_avr: [],
_Constants.num_med: [], _Constants.tot_gap: [], _Constants.tot_spn: [], _Constants.tot_avr: [],
_Constants.num_att: 0, _Constants.items: self.sequences, _Constants.attrs: [],
_Constants.M: self._max_num_columns, _Constants.N: self._num_rows, _Constants.L: self._max_value,
_Constants.max_attrs: [], _Constants.min_attrs: []}
# Iterate through all attributes and constraint and build parameters required by seq_to_pat
for attribute, constraints in self.attr_to_cts.items():
params[_Constants.num_att] += 1
params[_Constants.num_minmax].append(0)
params[_Constants.num_avr].append(0)
params[_Constants.num_med].append(0)
params[_Constants.max_attrs].append(attribute._max)
params[_Constants.min_attrs].append(attribute._min)
params[_Constants.attrs].append(attribute.values)
for constraint_type, constraint in constraints.items():
if isinstance(constraint, _Constraint.Average):
self._update_average_params(params, constraint)
if isinstance(constraint, _Constraint.Gap):
self._update_gap_params(params, constraint)
if isinstance(constraint, _Constraint.Median):
self._update_median_params(params, constraint)
if isinstance(constraint, _Constraint.Span):
self._update_span_params(params, constraint)
# Given all the parameters, setup the c++ object through the intermediary cython seq_to_pat.pyx
for constraint, value in params.items():
# print(constraint, " ", value)
setattr(cython_imp, constraint, value)
# Set frequency as a row count or row percentage. 1.0 will be used as percentage.
if isinstance(min_frequency, float) and min_frequency <= 1.0:
cython_imp.theta = cython_imp.N * min_frequency
else:
cython_imp.theta = min_frequency
return cython_imp
@staticmethod
def _update_average_params(params: dict, constraint: _Constraint.Average) -> NoReturn:
"""Updates average constraint inputs for C++ backend
:param constraint: average constraint obj
"""
# attribute id for attribute that a constraint will be enforced on
att_id = params[_Constants.num_att] - 1
params[_Constants.tot_avr].append(att_id)
if constraint.has_lower_bound():
params[_Constants.lavr].append(constraint.lower_bound)
params[_Constants.lavri].append(att_id)
params[_Constants.num_avr][-1] += 1
if constraint.has_upper_bound():
params[_Constants.uavr].append(constraint.upper_bound)
params[_Constants.uavri].append(att_id)
params[_Constants.num_avr][-1] += 1
@staticmethod
def _update_gap_params(params: dict, constraint: _Constraint.Gap) -> NoReturn:
"""Update gap constraint inputs for C++ backend
:param constraint: gap constraint obj
"""
# attribute id for attribute that a constraint will be enforced on
att_id = params[_Constants.num_att] - 1
params[_Constants.tot_gap].append(att_id)
if constraint.has_lower_bound():
params[_Constants.lgap].append(constraint.lower_bound)
params[_Constants.lgapi].append(att_id)
if constraint.has_upper_bound():
params[_Constants.ugap].append(constraint.upper_bound)
params[_Constants.ugapi].append(att_id)
@staticmethod
def _update_median_params(params: dict, constraint: _Constraint.Median) -> NoReturn:
"""Updates median constraint inputs for C++ backend
:param constraint: median constraint obj
"""
# attribute id for attribute that a constraint will be enforced on
att_id = params[_Constants.num_att] - 1
if constraint.has_lower_bound():
params[_Constants.lmed].append(constraint.lower_bound)
params[_Constants.lmedi].append(att_id)
params[_Constants.num_med][-1] += 1
if constraint.has_upper_bound():
params[_Constants.umed].append(constraint.upper_bound)
params[_Constants.umedi].append(att_id)
params[_Constants.num_med][-1] += 1
@staticmethod
def _update_span_params(params: dict, constraint: _Constraint.Span) -> NoReturn:
"""Updates span constraint inputs for C++ backend
:param constraint: span constraint obj
"""
"""attribute id for attribute that a constraint will be enforced on, we want att_id to start from zero but are
using the number of attribute so we simply start from one."""
att_id = params[_Constants.num_att] - 1
params[_Constants.tot_spn].append(att_id)
if constraint.has_lower_bound():
params[_Constants.lspn].append(constraint.lower_bound)
params[_Constants.lspni].append(att_id)
params[_Constants.num_minmax][-1] += 2
if constraint.has_upper_bound():
params[_Constants.uspn].append(constraint.upper_bound)
params[_Constants.uspni].append(att_id)
def __str__(self) -> str:
"""return human-readable string representation of the class
"""
str = "\n\nSeq2Pat"
for attribute, constraints in self.attr_to_cts.items():
str += "\nConstraints of Attribute: " + repr(attribute)
str += "\nConstraints: " + repr(constraints)
for constraint_type, constraint in constraints.items():
str += "\nConstraint: " + constraint_type + " " + repr(constraint)
str += "\nLB: " + repr(constraint.lower_bound)
str += "\nUB: " + repr(constraint.upper_bound)
return str