-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathIllTr.py
284 lines (228 loc) · 10 KB
/
IllTr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import torch
import torch.nn as nn
from torch.functional import Tensor
from torch.nn.modules.activation import Tanhshrink
from timm.models.layers import trunc_normal_
from functools import partial
class Ffn(nn.Module):
# feed forward network layer after attention
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, task_embed=None, level=0):
N, L, D = x.shape
qkv = self.qkv(x).reshape(N, L, 3, self.num_heads, D // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
# for decoder's task_embedding of different levels of attention layers
if task_embed != None:
_N, _H, _L, _D = q.shape
task_embed = task_embed.reshape(1, _H, _L, _D)
if level == 1:
q += task_embed
k += task_embed
if level == 2:
q += task_embed
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(N, L, D)
x = self.proj(x)
x = self.proj_drop(x)
return x
class EncoderLayer(nn.Module):
def __init__(self, dim, num_heads, ffn_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.norm2 = norm_layer(dim)
ffn_hidden_dim = int(dim * ffn_ratio)
self.ffn = Ffn(in_features=dim, hidden_features=ffn_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x = x + self.attn(self.norm1(x))
x = x + self.ffn(self.norm2(x))
return x
class DecoderLayer(nn.Module):
def __init__(self, dim, num_heads, ffn_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn1 = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.norm2 = norm_layer(dim)
self.attn2 = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.norm3 = norm_layer(dim)
ffn_hidden_dim = int(dim * ffn_ratio)
self.ffn = Ffn(in_features=dim, hidden_features=ffn_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, task_embed):
x = x + self.attn1(self.norm1(x), task_embed=task_embed, level=1)
x = x + self.attn2(self.norm2(x), task_embed=task_embed, level=2)
x = x + self.ffn(self.norm3(x))
return x
class ResBlock(nn.Module):
def __init__(self, channels):
super(ResBlock, self).__init__()
self.conv1 = nn.Conv2d(channels, channels, kernel_size=5, stride=1,
padding=2, bias=False)
self.bn1 = nn.InstanceNorm2d(channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=5, stride=1,
padding=2, bias=False)
self.bn2 = nn.InstanceNorm2d(channels)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += residual
out = self.relu(out)
return out
class Head(nn.Module):
def __init__(self, in_channels, out_channels):
super(Head, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1,
padding=1, bias=False)
self.bn1 = nn.InstanceNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.resblock = ResBlock(out_channels)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.resblock(out)
return out
class PatchEmbed(nn.Module):
""" Feature to Patch Embedding
input : N C H W
output: N num_patch P^2*C
"""
def __init__(self, patch_size=1, in_channels=64):
super().__init__()
self.patch_size = patch_size
self.dim = self.patch_size ** 2 * in_channels
def forward(self, x):
N, C, H, W = ori_shape = x.shape
p = self.patch_size
num_patches = (H // p) * (W // p)
out = torch.zeros((N, num_patches, self.dim)).to(x.device)
i, j = 0, 0
for k in range(num_patches):
if i + p > W:
i = 0
j += p
out[:, k, :] = x[:, :, i:i + p, j:j + p].flatten(1)
i += p
return out, ori_shape
class DePatchEmbed(nn.Module):
""" Patch Embedding to Feature
input : N num_patch P^2*C
output: N C H W
"""
def __init__(self, patch_size=1, in_channels=64):
super().__init__()
self.patch_size = patch_size
self.num_patches = None
self.dim = self.patch_size ** 2 * in_channels
def forward(self, x, ori_shape):
N, num_patches, dim = x.shape
_, C, H, W = ori_shape
p = self.patch_size
out = torch.zeros(ori_shape).to(x.device)
i, j = 0, 0
for k in range(num_patches):
if i + p > W:
i = 0
j += p
out[:, :, i:i + p, j:j + p] = x[:, k, :].reshape(N, C, p, p)
i += p
return out
class Tail(nn.Module):
def __init__(self, in_channels, out_channels):
super(Tail, self).__init__()
self.output = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
def forward(self, x):
out = self.output(x)
return out
class IllTr_Net(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, patch_size=1, in_channels=3, mid_channels=16, num_classes=1000, depth=12,
num_heads=8, ffn_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
norm_layer=nn.LayerNorm):
super(IllTr_Net, self).__init__()
self.num_classes = num_classes
self.embed_dim = patch_size * patch_size * mid_channels
self.head = Head(in_channels, mid_channels)
self.patch_embedding = PatchEmbed(patch_size=patch_size, in_channels=mid_channels)
self.embed_dim = self.patch_embedding.dim
if self.embed_dim % num_heads != 0:
raise RuntimeError("Embedding dim must be devided by numbers of heads")
self.pos_embed = nn.Parameter(torch.zeros(1, (128 // patch_size) ** 2, self.embed_dim))
self.task_embed = nn.Parameter(torch.zeros(6, 1, (128 // patch_size) ** 2, self.embed_dim))
self.encoder = nn.ModuleList([
EncoderLayer(
dim=self.embed_dim, num_heads=num_heads, ffn_ratio=ffn_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer)
for _ in range(depth)])
self.decoder = nn.ModuleList([
DecoderLayer(
dim=self.embed_dim, num_heads=num_heads, ffn_ratio=ffn_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer)
for _ in range(depth)])
self.de_patch_embedding = DePatchEmbed(patch_size=patch_size, in_channels=mid_channels)
# tail
self.tail = Tail(int(mid_channels), in_channels)
self.acf = nn.Hardtanh(0,1)
trunc_normal_(self.pos_embed, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, x):
x = self.head(x)
x, ori_shape = self.patch_embedding(x)
x = x + self.pos_embed[:, :x.shape[1]]
for blk in self.encoder:
x = blk(x)
for blk in self.decoder:
x = blk(x, self.task_embed[0, :, :x.shape[1]])
x = self.de_patch_embedding(x, ori_shape)
x = self.tail(x)
x = self.acf(x)
return x
def IllTr(**kwargs):
model = IllTr_Net(
patch_size=4, depth=6, num_heads=8, ffn_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs)
return model