forked from ThomasCOConnor/dynsf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdynsf
executable file
·522 lines (435 loc) · 20.9 KB
/
dynsf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (C) 2011 Mattias Slabanja <slabanja@chalmers.se>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
# 02110-1301, USA.
import re
import os
import sys
import optparse
import logging
import numpy as np
from itertools import count, islice
from functools import partial
import dsf.filon as filon
from dsf.output import *
from dsf.index import section_index
from dsf.trajectory import get_itraj, iwindow
from dsf.reciprocal import reciprocal_isotropic, reciprocal_line
from dsf.binner import fixed_bin_averager
from dsf.handythread import foreach
from multiprocessing import cpu_count
try:
from scipy.interpolate import interp1d
except ImportError:
# Fallback if SciPy isn't available
def interp1d(xp, yp):
if len(yp.shape) == 1:
return lambda x:np.interp(x,xp,yp)
elif len(yp.shape) == 2:
return lambda x:np.array([np.interp(x,xp,ypi) for ypi in yp])
else:
raise RuntimeError("yp can only be 1d or 2d")
class averager:
"""Naive special purpose averager class used in dynsf
It assists with keeping track on how many data samples
have been added to each slot.
Ex:
av = averager(2)
av[0] += 10
av[1] += 2
av[0] += 3
av.get_av() ->
[6, 3]
"""
def __init__(self, N_slots, initial=np.zeros(1)):
assert(N_slots >= 1)
self._N = N_slots
self._data = [np.array(initial) for n in range(N_slots)]
self._samples = np.zeros(N_slots)
def __getitem__(self, key):
return self._data[key]
def __setitem__(self, key, val):
self._data[key] = val
self._samples[key] += 1
def add(self, array, slot):
self[slot] += array
def get_single_av(self, slot):
f = 1.0/self._samples[slot]
return f*self._data[slot]
def get_av(self):
return np.array([self.get_single_av(i) for i in range(self._N)])
hbar = 6.58211928e-1 # eV fs
pi = np.pi
two_pi = 2.0 * pi
if __name__ == '__main__':
parser = optparse.OptionParser()
iogroup = optparse.OptionGroup(parser,
'Input/output options',
'Options controlling input and output, '
'files and fileformats.')
iogroup.add_option('-f', '--trajectory', metavar='TRAJECTORY_FILE',
help='Molecular dynamics TRAJECTORY_FILE to be '
'analyzed. '
'Supported formats depends on VMD\'s molfile plugin '
'or gmxlib. As a fallback, a lammps-trajectory parser '
'implemented in Python is also available.')
iogroup.add_option('-n', '--index', metavar='INDEX_FILE',
help='Optional index file (think Gromacs INI-style) for '
'specifying atom types. Atoms are indexed from 1 up to N '
'(total number of atoms). '
'It is possible to index only a sub set of all atoms, and '
'atoms can be indexed in more than one group. '
'If no INDEX_FILE is provided, all atoms will be '
'considered identical.')
iogroup.add_option('', '--om', metavar='FILE',
help='Write output to FILE as a Matlab style m-file.')
iogroup.add_option('', '--op', metavar='FILE',
help='Write output to FILE as a Python pickled file.')
parser.add_option_group(iogroup)
kspace = optparse.OptionGroup(parser,
'General k-space options',
'Options controlling general aspects for how '
'k-space should be sampled and collected.')
kspace.add_option('', '--k-sampling', metavar='STYLE',
default='isotropic',
help='Possible values are "isotropic" (default) '
'for sampling isotropic systems (as liquids), '
'"line" to sample uniformely along a certain direction '
'in k-space, '
'"explicit" for sampling on an explicit set of k-points')
kspace.add_option('','--k-bins', metavar='BINS', type='int',
default=80,
help='Number of "radial" bins to use (between 0 and '
'largest |k|-value) when collecting resulting '
'average. Default value is 80.')
parser.add_option_group(kspace)
kiso = optparse.OptionGroup(parser,
'Isotropic k-space sampling')
kiso.add_option('','--max-k-points', metavar='KPOINTS', type='int',
default=20000,
help='Maximum number of points used to sample k-space. '
'Puts an (approximate) upper limit by randomly selecting points. '
'Default value is 20000.')
kiso.add_option('','--k-max', metavar='KMAX', type='float', default=60,
help='Largest k-value to consider (in "2*pi*nm^-1"). '
'Default value for KMAX is 60. ')
parser.add_option_group(kiso)
kline = optparse.OptionGroup(parser,
'Line-style k-space sampling')
kline.add_option('','--k-direction', metavar='KDIRECTION',
help='Point in k-space to consider. '
'KPOINTS points will be evenly placed between '
'0,0,0 and KDIRECTION. Given as three '
'comma separated values.')
kline.add_option('','--k-points', metavar='KPOINTS', type='int',
default=100,
help='Numbers of uniformly distributed points between '
'0,0,0 and KDIRECTION to consider. Default value is 100.')
parser.add_option_group(kline)
# kexpl = optparse.OptionGroup(parser,
# 'Explicit k-space sampling')
# kexpl.add_option('','--k-points-file', metavar='KPOINTS-FILE',
# help='KPOINTS-FILE should contain each kpoint to '
# 'consider. ')
# parser.add_option_group(kexpl)
tgroup = optparse.OptionGroup(parser, 'Time-related options',
'Options controlling timestep, '
'length and shape of trjectory frame window, etc.')
tgroup.add_option('','--nt', metavar='TIME_CORR_STEPS', type='int',
help='Determines the length of the trajectory frame window '
'to use for time correlation calculation. '
'TIME_CORR_STEPS is expressed in "number of frames" and '
'e.g. determines the smallest frequency resolved. '
'If no TIME_CORR_STEPS is provided, only static (t=0) '
'correlations will be calculated')
tgroup.add_option('','--max-frames', metavar='FRAMES', type='int',
default=100,
help='Limits the total number of trajectory frames read '
'to FRAMES. '
'The default value is set to 100.')
tgroup.add_option('','--step', metavar='STEP', type='int', default=1,
help='Only use every (STEP)th trajectory frame. '
'Default STEP is 1, meaning every frame is processed. '
'STEP affects dt and hence the smallest time resolved.')
tgroup.add_option('','--stride', metavar='STRIDE', type='int', default=1,
help='Stride STRIDE frames between consecutive trajectory '
'windows. This does not affect dt. '
'If e.g. STRIDE > TIME_CORR_STEPS, some frames will '
'be completely unused.')
tgroup.add_option('', '--dt', metavar='DELTATIME',
help='Explicitly sets the time difference between two '
'consecutively processed trajectory frames to DELTATIME (femtoseconds). '
'Useful when no time step information can be extracted from '
'the trajectory file (e.g. when using molfileplugin).')
parser.add_option_group(tgroup)
options = optparse.OptionGroup(parser, 'General processing options')
options.add_option('','--calculate-self', action='store_true', default=False,
help='Calculate the self-part, F_s, ...')
parser.add_option_group(options)
parser.add_option('', '--threads', type='int', default=0,
help='Number of threads to use. '
'The default value is taken from OMP_NUM_THREADS if it is set, '
'otherwise it is set to the number of available "cpus".')
parser.add_option('-q', '--quiet', action='count', default=0,
help='Increase quietness (opposite of verbosity).')
parser.add_option('-v', '--verbose', action='count', default=0,
help='Increase verbosity (opposite of quietness).')
(options, args) = parser.parse_args()
quietness= options.quiet-options.verbose
logger = logging.getLogger('dynsf')
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter(r'%(levelname)s: %(message)s'))
logger.addHandler(handler)
if quietness < 0:
logger.setLevel(logging.DEBUG)
elif quietness == 0:
logger.setLevel(logging.INFO)
elif quietness == 1:
logger.setLevel(logging.WARN)
elif quietness == 2:
logger.setLevel(logging.ERROR)
else:
logger.setLevel(logging.CRITICAL)
if options.trajectory is None:
logger.error('A trajectory must be specified. Use option -f.\n')
parser.print_help()
sys.exit(1)
if not options.om and not options.op:
logger.warn('No output file specified. Results will not be saved')
if options.threads != 0:
num_threads = options.threads
elif 'OMP_NUM_THREADS' in os.environ:
num_threads = int(os.environ['OMP_NUM_THREADS'])
else:
num_threads = cpu_count()
if num_threads < 1:
logger.error('Number of threads must be > 0')
sys.exit(1)
# Affects rho_j_k
os.environ['OMP_NUM_THREADS'] = str(num_threads)
# Read the two first frames to set up references values
# box size, number of different particles, time step length, etc
try:
f0, f1 = islice(get_itraj(options.trajectory, step=options.step),
2)
except ValueError:
logger.error('Failed to read two consecutive frames to determine '
'delta t. Is the trajectory long enough?')
sys.exit(1)
delta_t = f1['time'] - f0['time']
if options.dt:
try:
delta_t = float(options.dt)
except ValueError:
logger.error('Could not parse provided dt (%s) as float!' % options.dt)
sys.exit(1)
logger.warn('-- Explicitly setting delta time to %f fs.' % delta_t)
elif delta_t == 0.0:
logger.warn("Delta time is 0.0 (meaning, can't read info from trajectory)!")
logger.warn('-- Defaulting to 1 fs [this will affect the output scale]')
delta_t = 1
if options.nt:
assert(options.nt >= 1)
N_tc = options.nt + (options.nt+1)%2
else:
N_tc = 1
if N_tc > 1:
logger.info('-- delta_t found to be %f [fs], time window %f [fs]' % \
(delta_t, delta_t*(options.nt-1)))
dw = two_pi/(options.nt*delta_t)
logger.info('-- delta_omega, max_omega = %f, %f [fs^-1]' % \
(dw, dw*options.nt))
# Do we get any velocities from the trajectory reader?
if 'v' in f0:
calculate_current = True
else:
calculate_current = False
# Should the particle self correlations be calculated?
if options.calculate_self:
calculate_self = True
else:
calculate_self = False
index = section_index(options.index, f0['N'])
a,b,c = reference_box = f0['box']
reference_volume = abs(np.dot(np.cross(a,b),c))
particle_types = index.get_section_names()
particle_counts = map(len, index.get_section_indices())
particle_densities = [n/reference_volume for n in particle_counts]
logger.info('Trajectory file: %s' % options.trajectory)
logger.info('-- With a total of %i particles, %i types.' % (
f0['N'], len(particle_types)))
for i, t in enumerate(particle_types):
logger.info('-- %d. %d %s' % (i+1, particle_counts[i], t))
logger.info('Simulation box is\n%s' % str(reference_box))
style = options.k_sampling
if style not in ('isotropic', 'line'):
logger.error('Unknown style %s' % style)
sys.exit(1)
if style == 'line':
# Sample on points along a line in k-space
if options.k_direction is None:
logger.error('k-direction must be specified in line mode.')
sys.exit(1)
try:
k_direction = np.array(map(float,options.k_direction.split(',')))
except ValueError:
logger.error('k-direction must be specified as a valid comma '
'separated three-tuple.')
sys.exit(1)
rec = reciprocal_line(points=options.k_points,
k_direction=k_direction)
elif style == 'isotropic':
# Sample k-space without preference to direction
rec = reciprocal_isotropic(reference_box,
max_points=options.max_k_points,
max_k=options.k_max)
if len(rec.k_distance) > 1:
logger.info('N kpoints = %i' % len(rec.k_distance))
else:
logger.warning('N kpoints = %i' % len(rec.k_distance))
logger.info('k_max = %f --> x_min = %f [nm]' % \
(rec.max_k, two_pi/rec.max_k))
assert options.stride > 0
N_stride = options.stride
# function to use to "calculate rho(k)"
f2 = rec.get_frame_process_function()
# function to split particles into different index groups (types)
f1 = index.get_section_split_function() # Prerequisite for f2
# apply this to each frame considered
element_processor = lambda frame : f2(f1(frame))
# The trajectory window iterator
itraj_window = iwindow(get_itraj(options.trajectory,
step=options.step,
max_frames=options.max_frames),
width=N_tc,
stride=options.stride,
element_processor=element_processor)
# TODO....
# * Assert box is not changed during consecutive frames
Ntypes = len(particle_types)
m = count(0)
pair_list = [(m.next(),i,j)
for i in xrange(Ntypes) for j in xrange(i,Ntypes)]
pair_types = [particle_types[i]+'-'+particle_types[j] for _, i, j in pair_list]
z = np.zeros(len(rec.q_distance))
F_k_t_avs = [averager(N_tc, z) for _ in pair_list]
if calculate_current:
Cl_k_t_avs = [averager(N_tc, z) for _ in pair_list]
Ct_k_t_avs = [averager(N_tc, z) for _ in pair_list]
if calculate_self:
F_s_k_t_avs = [averager(N_tc, z) for _ in particle_types]
def calc_corr(window, time_i):
# Calculate correlations between two frames in the window
f0 = window[0]
fi = window[time_i]
for m, i, j in pair_list:
F_k_t_avs[m][time_i] += np.real(f0['rho_ks'][i] * fi['rho_ks'][j].conjugate())
if calculate_current:
for m, i, j in pair_list:
Cl_k_t_avs[m][time_i] += np.real(f0['jz_ks'][i] * fi['jz_ks'][j].conjugate())
Ct_k_t_avs[m][time_i] += 0.5 * \
np.real(np.sum(f0['jper_ks'][i] * fi['jper_ks'][j].conjugate(), axis=0))
if calculate_self:
for i,F_s in enumerate(
rec.process_specific_xs(
[(xi-x0) for xi,x0 in zip(fi['xs'], f0['xs'])])):
F_s_k_t_avs[i][time_i] += np.real(F_s)
# This is the "main loop"
for window in itraj_window:
logger.debug("processing window step %i to %i" % (window[0]['index'],
window[-1]['index']))
# Have num_threads threads concurrently process the window
foreach(partial(calc_corr, window), xrange(len(window)), threads=num_threads)
# Extract correlation (all k-point) averages
# and calculate average per 'radial' bin
k_bins = fixed_bin_averager(rec.max_k, options.k_bins, rec.k_distance)
k_bin_averager = partial(k_bins.bin, axis=1)
F_k_t = map(k_bin_averager, [F.get_av() for F in F_k_t_avs])
if calculate_current:
Cl_k_t = map(k_bin_averager, [C.get_av() for C in Cl_k_t_avs])
Ct_k_t = map(k_bin_averager, [C.get_av() for C in Ct_k_t_avs])
if calculate_self:
F_s_k_t = map(k_bin_averager, [C.get_av() for C in F_s_k_t_avs])
for i,N in enumerate(particle_counts):
F_s_k_t[i] *= (1.0/np.sqrt(N))
t = delta_t * np.arange(N_tc)
k = k_bins.x.copy()
k_bin_count = k_bins.bin_count.copy()
output = []
output += [(k, 'k', 'k-values (technically, bin centers) [nm^1]'),
(t, 't', 'time values [fs]'),
(k_bin_count, 'k_bin_count', 'Number of k-points per bin')]
output += [(F_k_t[m], 'F_k_t_%i_%i' % (i,j),
'Partial intermediate scattering function [time, k] (%s)' % pair_types[m])
for m,i,j in pair_list]
if calculate_current:
output += [(Cl_k_t[m], 'Cl_k_t_%i_%i' % (i,j),
'Longitudinal current correlation [time, k] (%s)' % pair_types[m])
for m,i,j in pair_list]
output += [(Ct_k_t[m], 'Ct_k_t_%i_%i' % (i,j),
'Transversal current correlation [time, k] (%s)' % pair_types[m])
for m,i,j in pair_list]
if calculate_self:
output += [(F_s_k_t[i], 'F_s_k_t_%i' % i,
'Self part of intermediate scattring function [time, k]')
for i in range(index.N_sections())]
if len(k) > 1:
# Create an odd number of linearly spaced k-points, ranging from
# the "distance" of the smallest non-empty bin and up.
k_ = k_bins.x_linspace
k_ = k_[k_ >= k[1]]
k_ = k_[k_ <= k[-1]]
if not len(k_) % 2:
k_ = k_[:-1]
dr = two_pi/k[-1]
r = np.arange(5*dr, pi/k[1], dr)
def F_to_G(F, pair_index):
_,i,j = pair_list[pair_index]
f = 1 / (r*2*pi**2 * particle_densities[j])
kF_ = k_*interp1d(k, F - 1)(k_)
return f*filon.sin_integral(kF_, k_[1]-k_[0], r, k_[0], axis=1) + 1
G_r_t = [F_to_G(F, i) for i, F in enumerate(F_k_t)]
output += [(r, 'r', 'r-values for calculated G(r,t) [nm]')]
output += [(G_r_t[m], 'G_r_t_%i_%i' % (i,j),
'Calculated partial van Hove function [time, r] (%s)' % pair_types[m])
for m,i,j in pair_list]
if len(t) > 2:
w, S_k_w = zip(*[filon.fourier_cos(F, delta_t) for F in F_k_t])
w = w[0]
output += [(w, 'w', 'omega [fs^-1]')]
output += [(S_k_w[m], 'S_k_w_%i_%i' % (i,j),
'Partial dynamical structure factor [omega, k] (%s)' % pair_types[m])
for m,i,j in pair_list]
if calculate_current:
_, Cl_k_w = zip(*[filon.fourier_cos(C, delta_t) for C in Cl_k_t])
_, Ct_k_w = zip(*[filon.fourier_cos(C, delta_t) for C in Ct_k_t])
output += [(Cl_k_w[m], 'Cl_k_w_%i_%i' % (i,j),
'Longitudinal partial current correlation [omega, k] (%s)' % pair_types[m])
for m,i,j in pair_list]
output += [(Ct_k_w[m], 'Ct_k_w_%i_%i' % (i,j),
'Transversal partial current correlation [omega, k] (%s)' % pair_types[m])
for m,i,j in pair_list]
if calculate_self:
_, S_s_k_w = zip(*[filon.fourier_cos(F, delta_t) for F in F_s_k_t])
output += [(S_s_k_w[i], 'S_s_k_w_%i' % i,
'Self part of partial dynamical structure factor [omega, k]')
for i,_ in enumerate(particle_types)]
comment = 'Command line: ' + ' '.join(sys.argv)
for fn, writer in ((options.om, partial(create_mfile, comment=comment)),
(options.op, create_pfile)):
fn and writer(fn, output)