-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDivideAndConquer.c
322 lines (292 loc) · 8.09 KB
/
DivideAndConquer.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
#include"DivideAndConquer.h"
#include<stdio.h>
#include<stdlib.h>
/** 最大子数组问题 */
ThreeNumber find_max_crossing_subarray(int *A, int low, int mid, int high)
{
//求跨越中点的最大子数组
int left_sum = A[mid];
int max_left = mid;
int sum = A[mid];
int i;
for(i = mid-1; i >= low; i--)
{
sum = sum + A[i];
if(sum > left_sum)
{
left_sum = sum;
max_left = i;
}
}
int right_sum = A[mid+1];
int max_right = mid+1;
sum = A[mid + 1];
for(i = mid+2; i <= high; i++)
{
sum = sum + A[i];
if(sum > right_sum)
{
right_sum = sum;
max_right = i;
}
}
ThreeNumber value;
value.left = max_left;
value.right = max_right;
value.sum = left_sum + right_sum;
return value;
}
ThreeNumber find_maximum_subarray(int *A, int low, int high)
{
ThreeNumber value;
ThreeNumber left_value;
ThreeNumber right_value;
ThreeNumber cross_value;
int middle;
if(high == low)
{
value.left = low;
value.right = high;
value.sum = A[low];
return value;
}else
{
middle = (low + high)/2;
left_value = find_maximum_subarray(A,low,middle);
right_value = find_maximum_subarray(A,middle+1,high);
cross_value = find_max_crossing_subarray(A,low,middle,high);
if(left_value.sum >= right_value.sum && left_value.sum >= cross_value.sum)
{
return left_value;
}
else if(right_value.sum >= left_value.sum && right_value.sum >= cross_value.sum)
{
return right_value;
}
else
{
return cross_value;
}
}
}
/**<矩阵相乘 */
void show(int *A, int n)
{
int i,j;
for(i = 0; i < n; i++)
{
for(j = 0; j < n; j++)
printf("%d\t",A[i*n+j]);
printf("\n");
}
}
/**< 矩阵相乘的常规算法 */
void square_matrix_multiply(int *A, int *B, int *C, int n)
{
int i,j,k;
for(i = 0; i < n; i++)
{
for(j = 0; j < n; j++)
{
C[n*i+j] = 0;
for(k = 0; k < n; k++)
{
C[n*i+j] = C[n*i+j] + A[n*i+k]*B[n*k+j];
}
}
}
}
void square_matrix_multiply_recursive(int *A, int *B, int *C, int n)
{
//其中n为阶数;
if(n == 1)
{
*C = *A * *B;
}else
{
int *A11 = (int *)malloc(n*n/4*sizeof(int));
int *A12 = (int *)malloc(n*n/4*sizeof(int));
int *A21 = (int *)malloc(n*n/4*sizeof(int));
int *A22 = (int *)malloc(n*n/4*sizeof(int));
int *B11 = (int *)malloc(n*n/4*sizeof(int));
int *B12 = (int *)malloc(n*n/4*sizeof(int));
int *B21 = (int *)malloc(n*n/4*sizeof(int));
int *B22 = (int *)malloc(n*n/4*sizeof(int));
int *C11 = (int *)malloc(n*n/4*sizeof(int));
int *C12 = (int *)malloc(n*n/4*sizeof(int));
int *C21 = (int *)malloc(n*n/4*sizeof(int));
int *C22 = (int *)malloc(n*n/4*sizeof(int));
int *S1 = (int *)malloc(n*n/4*sizeof(int));
int *S2 = (int *)malloc(n*n/4*sizeof(int));
int *S3 = (int *)malloc(n*n/4*sizeof(int));
int *S4 = (int *)malloc(n*n/4*sizeof(int));
int *S5 = (int *)malloc(n*n/4*sizeof(int));
int *S6 = (int *)malloc(n*n/4*sizeof(int));
int *S7 = (int *)malloc(n*n/4*sizeof(int));
int *S8 = (int *)malloc(n*n/4*sizeof(int));
int *S9 = (int *)malloc(n*n/4*sizeof(int));
int *S10 = (int *)malloc(n*n/4*sizeof(int));
int *P1 = (int *)malloc(n*n/4*sizeof(int));
int *P2 = (int *)malloc(n*n/4*sizeof(int));
int *P3 = (int *)malloc(n*n/4*sizeof(int));
int *P4 = (int *)malloc(n*n/4*sizeof(int));
int *P5 = (int *)malloc(n*n/4*sizeof(int));
int *P6 = (int *)malloc(n*n/4*sizeof(int));
int *P7 = (int *)malloc(n*n/4*sizeof(int));
matrix_divide(A,A11,A12,A21,A22,n);
matrix_divide(B,B11,B12,B21,B22,n);
matrix_minus(B12,B22,S1,n/2);
matrix_add(A11,A12,S2,n/2);
matrix_add(A21,A22,S3,n/2);
matrix_minus(B21,B11,S4,n/2);
matrix_add(A11,A22,S5,n/2);
matrix_add(B11,B22,S6,n/2);
matrix_minus(A12,A22,S7,n/2);
matrix_add(B21,B22,S8,n/2);
matrix_minus(A11,A21,S9,n/2);
matrix_add(B11,B12,S10,n/2);
square_matrix_multiply_recursive(A11,S1,P1,n/2);
square_matrix_multiply_recursive(S2,B22,P2,n/2);
square_matrix_multiply_recursive(S3,B11,P3,n/2);
square_matrix_multiply_recursive(A22,S4,P4,n/2);
square_matrix_multiply_recursive(S5,S6,P5,n/2);
square_matrix_multiply_recursive(S7,S8,P6,n/2);
square_matrix_multiply_recursive(S9,S10,P7,n/2);
matrix_add(P5,P4,C11,n/2);//C11=P5+P4-P2+P6
matrix_minus(C11,P2,C11,n/2);
matrix_add(C11,P6,C11,n/2);
matrix_add(P1,P2,C12,n/2);//C12=P1+P2;
matrix_add(P3,P4,C21,n/2);//C21=P3+P4;
matrix_add(P5,P1,C22,n/2);//C22=P5+P1-P3-P7;
matrix_minus(C22,P3,C22,n/2);
matrix_minus(C22,P7,C22,n/2);
matrix_merge(C, C11, C12, C21, C22, n);
//show(C, n);
//printf("c:\n");
free(A11),free(A12),free(A21),free(A22);
free(B11),free(B12),free(B21),free(B22);
free(C11),free(C12),free(C21),free(C22);
free(S1),free(S2),free(S3),free(S4),free(S5),free(S6),free(S7),free(S8),free(S9),free(S10);
free(P1),free(P2),free(P3),free(P4),free(P5),free(P6),free(P7);
}
}
/**< 将一个2n*2n的矩阵分解成四个n*n的矩阵 */
void matrix_divide(int *A, int *A11, int *A12, int *A21, int *A22,int n)
{
int i,j,k,l;
if(n == 2)
{
*A11 = *A++;
*A12 = *A++;
*A21 = *A++;
*A22 = *A;
}else
{
for(j = 0; j < n/2; j++)//A11
{
for(i = 0; i < n/2; i++)
{
A11[i+j*(n/2)] = A[j*4+i];
}
}
for(j = 0; j < n/2; j++)//A12
{
for(i = n/2,k = 0; i < n; i++,k++)
{
A12[k+j*(n/2)] = A[j*4+i];
}
}
for(j = n/2,k = 0; j < n; j++, k++)//A21
{
for(i = 0; i < n/2; i++)
{
A21[i+k*(n/2)] = A[j*4+i];
}
}
for(j = n/2, k = 0; j < n; j++, k++)//A22
{
for(i = n/2,l = 0; i < n; i++,l++)
{
A22[l+k*(n/2)] = A[j*4+i];
}
}
}
}
/**< 将四个n*n的矩阵合并成一个2n*2n的矩阵 */
void matrix_merge(int *A, int *A11, int *A12, int *A21, int *A22,int n)
{
int i,j,k,l;
if(n == 2)
{
*A++ = *A11;
*A++ = *A12;
*A++ = *A21;
*A = *A22;
}else
{
for(j = 0; j < n/2; j++)//A11
{
for(i = 0; i < n/2; i++)
{
A[j*4+i] = A11[i+j*(n/2)];
}
}
for(j = 0; j < n/2; j++)//A12
{
for(i = n/2,k = 0; i < n; i++,k++)
{
A[j*4+i] = A12[k+j*(n/2)];
}
}
for(j = n/2,k = 0; j < n; j++, k++)//A21
{
for(i = 0; i < n/2; i++)
{
A[j*4+i] = A21[i+k*(n/2)];
}
}
for(j = n/2, k = 0; j < n; j++, k++)//A22
{
for(i = n/2,l = 0; i < n; i++,l++)
{
A[j*4+i] = A22[l+k*(n/2)];
}
}
}
}
/**< n阶矩阵相加 C=A+B */
void matrix_add(int *A, int *B, int *C, int n)
{
int sum = n*n;;
while(sum--)
{
*C++ = *A++ + *B++;
}
}
/**< n阶矩阵相减 C=A-B */
void matrix_minus(int *A, int *B, int *C, int n)
{
int sum = n*n;;
while(sum--)
{
*C++ = *A++ - *B++;
}
}
/********************************************//**
* \brief 用于该int型的二进制表现形式
*
* \param int number 需要显示的int型数
* \param int sum_bit 需要显示的位数
* \return
*
***********************************************/
void show_bit(int number, int sum_bit)
{
int num;
if(sum_bit-- != 1)
{
num = number >> 1;
show_bit(num,sum_bit);
}
printf("%d",number&0x1);
}