-
Notifications
You must be signed in to change notification settings - Fork 127
/
Copy pathtemplatematching.py
59 lines (49 loc) · 2.12 KB
/
templatematching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from skimage.feature import match_template
from skimage.filters import threshold_otsu
from skimage.io import imread
import os.path
# characters that should be clearly examined using template matching
confusing_chars = {'2', 'Z', 'B', '8', 'D', '0', '5', 'S', 'Q', 'R', '7'}
# a dictionary that keeps track of characters that are similar to the
# confusing characters
similar_characters = {
'2':['Z'], 'Z':['2', '7'], '8':['B'], 'B':['8', 'R'], '5':['S'], 'S':['5'],
'0':['D', 'Q'], 'D':['0', 'Q'], 'Q':['D', '0'], '7':['Z']
}
def template_match(predicted_label, image_data, training_dir):
"""
applies the concept of template matching to determine the
character among the similar ones that have the highest match and
returns the label
Parameters:
------------
predicted_label: str; the character that was predicted by the machine
learning model
image_data: 2D numpy array image of the character that was predicted
training_dir: the directory for the images that will be used in matching
Returns:
---------
The label with the highest match value
"""
image_data = image_data.reshape(20, 20)
prediction_fraction = fraction_match(predicted_label, training_dir,
image_data)
highest_fraction = prediction_fraction
highest_fraction_label = predicted_label
similar_labels_list = similar_characters[predicted_label]
for each_similar_label in similar_labels_list:
match_value = fraction_match(each_similar_label, training_dir,
image_data)
if match_value > highest_fraction:
highest_fraction = match_value
highest_fraction_label = each_similar_label
return highest_fraction_label
def fraction_match(label, training_dir, image_data):
fraction = 0
for i in range(10):
image_dir = os.path.join(training_dir, label, label+'_'+str(i)+'.jpg')
image_sample = imread(image_dir, as_grey=True)
image_sample = image_sample < threshold_otsu(image_sample)
match_fraction = match_template(image_data, image_sample)
fraction += (match_fraction[0, 0] / 10)
return fraction