-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathFiberBundle.agda
240 lines (196 loc) · 7.78 KB
/
FiberBundle.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
{-# OPTIONS --without-K #-}
module FiberBundle where
open import Basics
open import EqualityAndPaths
open import PropositionalTruncation
open import PullbackSquare
open import Homotopies
open import Equivalences
open import Fiber
open import Language
open import Image
open import DependentTypes
open import InfinityGroups
{-
we start with the most natural definition
in a type theoretic setting
everything else in this file,
is about linking this definition
with definitions looking more like
what is common in mathematics
-}
record _is-a_-fiber-bundle {B : 𝒰₀} (φ : B → 𝒰₀) (F : 𝒰₀) : 𝒰₀ where
field
all-fibers-are-merely-equivalent : ∀ (b : B) → ∥ φ b ≃ F ∥
canonical-cover′ : B → 𝒰₀
canonical-cover′ b = φ b ≃ F
canonical-cover : ∑ canonical-cover′ → B
canonical-cover (F′ , _) = F′
record _is-a′_-fiber-bundle′ {E B : 𝒰₀} (p : E → B) (F : 𝒰₀) : 𝒰₁ where
field
χ : B → BAut F
classyfies : equivalence-of (λ b → fiber-of p at b) and (universal-family-over-BAut′ F) over χ
classifying-morphism′ : {E B : 𝒰₀} {p : E → B} {F : 𝒰₀}
→ p is-a′ F -fiber-bundle′
→ B → BAut F
classifying-morphism′ is-fiber-bundle =
let open _is-a′_-fiber-bundle′ is-fiber-bundle
in χ
-- product property expressed by pullback square
_is-a-product-with-projections_and_ :
∀ {A B : 𝒰₀} (Z : 𝒰₀) (z₁ : Z → A) (z₂ : Z → B)
→ 𝒰₀
Z is-a-product-with-projections z₁ and z₂ =
pullback-square-with-right (λ a → ∗)
bottom (λ b → ∗)
top z₁
left z₂
_is-a-product-of_and_ :
(Z A B : 𝒰₀) → 𝒰₀
Z is-a-product-of A and B =
∑ (λ (z₁ : Z → A) →
∑ (λ (z₂ : Z → B) → Z is-a-product-with-projections z₁ and z₂))
_*_ : ∀ {E B B′ : 𝒰₀}
→ (f : B′ → B) → (φ : E → B) → 𝒰₀
f * φ = upper-left-vertex-of (complete-to-pullback-square φ f)
_*→_ : ∀ {E B B′ : 𝒰₀}
→ (f : B′ → B) → (φ : E → B) → ((f * φ) → B′)
f *→ φ = left-map-of (complete-to-pullback-square φ f)
^ = underlying-map-of-the-surjection
{-
A more standard-mathematical way:
a fiber bundle φ : E → B is required to be locally trivial,
which might be witnessed by a pullback square like this:
V×F ───→ E
| ⌟ |
v*φ φ
↓ ↓
V ──v─↠ B
-}
record _is-a‴_-fiber-bundle‴ {E B : 𝒰₀} (φ : E → B) (F : 𝒰₀) : 𝒰₁ where
field
V : 𝒰₀
v : V ↠ B
v′ : V × F → E
□ : pullback-square-with-right φ
bottom (underlying-map-of-the-surjection v)
top v′
left π₁
{-
a dependent version of the above
-}
record _is-a″_-fiber-bundle″ {B : 𝒰₀} (φ : B → 𝒰₀) (F : 𝒰₀) : 𝒰₁ where
field
V : 𝒰₀
v : V ↠ B
pullback-trivializes : (x : V) → φ(v $↠ x) ≃ F
module logical-equivalences-between-the-four-definitions-of-fiber-bundles
{B F : 𝒰₀} where
def‴-to-def″ : ∀ {E : 𝒰₀} (p : E → B)
→ p is-a‴ F -fiber-bundle‴
→ (λ b → fiber-of p at b) is-a″ F -fiber-bundle″
def‴-to-def″ p record { V = V ; v = v ; v′ = v′ ; □ = □ } =
let
open pullbacks-are-fiberwise-equivalences □
in record
{
V = V ;
v = v ;
pullback-trivializes = λ x → fiber-of-π₁-is-second-factor x ∘≃ (equivalence-at x) ⁻¹≃
}
def″-to-def‴ : ∀ (φ : B → 𝒰₀)
→ φ is-a″ F -fiber-bundle″
→ (∑π₁-from φ) is-a‴ F -fiber-bundle‴
def″-to-def‴ φ
record { V = V ; v = v ; pullback-trivializes = pullback-trivializes } =
let
as-fiberwise-morphism : morphism-of-dependent-types _ _ (λ _ → F) φ
as-fiberwise-morphism =
record
{
base-change = v ↠→ ;
morphism-of-fibers = λ x → (pullback-trivializes x ⁻¹≃) ≃→
}
open fiberwise-equivalences-are-pullbacks
as-fiberwise-morphism
(λ x → proof-of-equivalency (pullback-trivializes x ⁻¹≃))
in record { V = V ; v = v ; v′ = glued-morphism ; □ = fiberwise-equivalences-are-pullbacks }
def″-to-def :
∀ (φ : B → 𝒰₀)
→ φ is-a″ F -fiber-bundle″
→ φ is-a F -fiber-bundle
def″-to-def φ
record { V = V ; v = v ; pullback-trivializes = pullback-trivializes } =
let
step1 : (x : B) → (y : fiber-of (v ↠→) at x) → φ x ≃ F
step1 x = λ {(y is-in-the-fiber-by γ) →
pullback-trivializes y ∘≃ transport-as-equivalence φ γ ⁻¹≃}
in record
{
all-fibers-are-merely-equivalent =
λ x → ∥→ step1 x ∥→ ((proof-that v is-surjective) x)
}
def-to-def″ :
∀ (φ : B → 𝒰₀)
→ φ is-a F -fiber-bundle
→ φ is-a″ F -fiber-bundle″
def-to-def″ φ
φ-is-a-fiber-bundle =
let
open _is-a_-fiber-bundle φ-is-a-fiber-bundle
in record
{
V = _ ;
v = canonical-cover is-surjective-by
(λ b →
∥≃ fiber-of-a-∑ {P = canonical-cover′} b ∥≃ ⁻¹≃
$≃ (all-fibers-are-merely-equivalent b) ) ;
pullback-trivializes = ∑π₂
}
open import Univalence
open import Sums
private
specialize-image-to-BAut : ∀ (φ : B → 𝒰₀)
→ (x : B) → ∥ (φ x ≃ F) ∥ → the-image-of (λ ∗ → F) contains (φ x)
specialize-image-to-BAut φ x = ∥→ (λ e → (∗ , univalence (e ⁻¹≃))) ∥→
point-to-F : 𝟙 → 𝒰₀
point-to-F _ = F
specialize-image-to-BAut′ : ∀ (φ : B → 𝒰₀)
→ (x : B) → the-image-of point-to-F contains (φ x) → ∥ (φ x ≃ F) ∥
specialize-image-to-BAut′ φ x = ∥→ (λ {(∗ , p) → U-transport p ⁻¹≃}) ∥→
abstract
def-to-def′ :
∀ (φ : B → 𝒰₀)
→ φ is-a F -fiber-bundle
→ (∑π₁-from φ) is-a′ F -fiber-bundle′
def-to-def′ φ
record { all-fibers-are-merely-equivalent = all-fibers-are-merely-equivalent } =
record
{
χ = λ x → ((φ x) , specialize-image-to-BAut φ x (all-fibers-are-merely-equivalent x)) ;
classyfies = λ x → fiber-of-a-∑ x
}
def′-to-def :
∀ {E : 𝒰₀} (p : E → B)
→ p is-a′ F -fiber-bundle′
→ (λ x → fiber-of p at x) is-a F -fiber-bundle
def′-to-def p
record { χ = χ ; classyfies = classyfies } =
record
{
all-fibers-are-merely-equivalent = λ b →
specialize-image-to-BAut′ (λ x → fiber-of p at x) b
(U-transport ((λ z → the-image-of _ contains z) ⁎ univalence (classyfies b) ) ⁻¹≃ $≃ (∑π₂ (χ b)))
}
compute-classifying-morphism :
{ϕ : B → 𝒰₀}
→ (ϕ-is-fiber-bundle : ϕ is-a F -fiber-bundle)
→ let is-fiber-bundle′ = def-to-def′ ϕ ϕ-is-fiber-bundle
in ι-BAut F ∘ classifying-morphism′ is-fiber-bundle′ ⇒ ϕ
compute-classifying-morphism ϕ-is-fiber-bundle x = refl
prove-equality-of-classifying-maps :
(ϕ ψ : B → BAut F)
→ ((x : B) → ι-BAut F (ϕ x) ≈ ι-BAut F (ψ x))
→ ϕ ⇒ ψ
prove-equality-of-classifying-maps ϕ ψ η =
injectives-are-monos ϕ ψ (ι-BAut F) (ι-im₁-is-injective _) η