-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscalar_metrics_v04.py
executable file
·412 lines (337 loc) · 14.5 KB
/
scalar_metrics_v04.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
from __future__ import division
#
# Scalar_metrics.py version 22-Jan-2018
# To do: Finish the documentation
# ==> All steps_color
# ==> Fixed for the case in which the pipeline breaks
class LoadMetrics:
""" Read values from the yaml's files and return an alert (NORMAL, WARN or ALARM)
associated to a given metric. It also attributes a color for a wedge in the interface
CORRECTING WXSIGMA
Functions:
----------
Load_qa(qa)
Load_metrics_n_tests()
keys_from_scalars( params_keys)
test_ranges(qa, kind_of_test)
qa_status(qa)
step_color( step_name)
"""
silent = 'False' # Defining a silent mode
prfx = 'ql-'
qa_name = ['countpix', 'getbias', 'getrms'
, 'xwsigma', 'countbins', 'integ'
, 'skycont', 'skypeak', 'skyresid', 'snr']
params_keys = [['NPIX_ALARM_RANGE', 'CUTHI', 'NPIX_WARN_RANGE', 'CUTLO']
, ['DIFF_ALARM_RANGE', 'PERCENTILES', 'DIFF_WARN_RANGE']
, ['RMS_ALARM_RANGE', 'RMS_WARN_RANGE']
, ['B_PEAKS', 'R_PEAKS', 'XSHIFT_ALARM_RANGE', 'WSHIFT_ALARM_RANGE'
, 'Z_PEAKS', 'WSHIFT_WARN_RANGE', 'XSHIFT_WARN_RANGE']
, ['CUTHI', 'CUTLO', 'CUTMED', 'NGOOD_ALARM_RANGE', 'NGOOD_WARN_RANGE']
, ['MAGDIFF_ALARM_RANGE', 'MAGDIFF_WARN_RANGE']
, ['SKYCONT_ALARM_RANGE', 'SKYCONT_WARN_RANGE', 'B_CONT', 'Z_CONT', 'R_CONT']
, ['B_PEAKS', 'R_PEAKS', 'SUMCOUNT_WARN_RANGE', 'SUMCOUNT_ALARM_RANGE', 'Z_PEAKS']
, ['PCHI_RESID', 'PER_RESID', 'SKY_ALARM_RANGE', 'SKY_WARN_RANGE', 'BIN_SZ']
, ['FIDSNR_WARN_RANGE', 'FIDSNR_ALARM_RANGE', 'FIDMAG']]
params_dict = {'countbins': ['CUTHI', 'CUTLO', 'CUTMED', 'NGOOD_ALARM_RANGE', 'NGOOD_WARN_RANGE'],
'countpix': ['NPIX_ALARM_RANGE', 'CUTHI', 'NPIX_WARN_RANGE', 'CUTLO'],
'getbias': ['DIFF_ALARM_RANGE', 'PERCENTILES', 'DIFF_WARN_RANGE'],
'getrms': ['RMS_ALARM_RANGE', 'RMS_WARN_RANGE'],
'integ': ['MAGDIFF_ALARM_RANGE', 'MAGDIFF_WARN_RANGE'],
'skycont': ['SKYCONT_ALARM_RANGE', 'SKYCONT_WARN_RANGE', 'B_CONT', 'Z_CONT', 'R_CONT'],
'skypeak': ['B_PEAKS', 'R_PEAKS', 'SUMCOUNT_WARN_RANGE'
, 'SUMCOUNT_ALARM_RANGE', 'Z_PEAKS'],
'skyresid': ['PCHI_RESID', 'PER_RESID', 'SKY_ALARM_RANGE', 'SKY_WARN_RANGE', 'BIN_SZ'],
'snr': ['FIDSNR_WARN_RANGE', 'FIDSNR_ALARM_RANGE', 'FIDMAG'],
'xwsigma': ['B_PEAKS', 'R_PEAKS', 'XSHIFT_ALARM_RANGE', 'WSHIFT_ALARM_RANGE'
, 'Z_PEAKS', 'WSHIFT_WARN_RANGE', 'XSHIFT_WARN_RANGE']}
def __init__(self, cam,exp,night):
self.cam = cam
self.exp = exp
self.night = night
# This is True if the pipeline didn't generate some yaml file
self.error = dict(zip(self.qa_name, ['False']*len(self.qa_name)) )
print('check *rms_over *bias *SUMCOUNT_RMS shouldbe SUMCOUNT_MED_SKY'
+'Resigf skyresid- residrms')
# QA tests and keys to respective values
self.metric_qa_list = ['getbias','getrms','skycont', 'countbins', 'countpix', 'snr'
,'skyresid', 'skypeak', 'integ', 'xsigma', 'wsigma' ] #THIS LINE : TB CHECKED
self.metric_key_list = ['BIAS','RMS_OVER','SKYCONT','NGOODFIBERS', 'NPIX_LOW', 'ELG_FIDMAG_SNR'
,'RESID_RMS', 'SUMCOUNT_MED_SKY', 'MAGDIFF_AVG', 'XSHIFT', 'WSHIFT']
self.metric_dict = dict(zip(self.metric_qa_list, self.metric_key_list))
try: #ff
self.metrics, self.tests = self.Load_metrics_n_tests()
except: #ff
print("Could not load metrics and tests" )
def Load_qa(self, qa):
"""loads a single yaml file ( rather slow!)
Arguments
---------
qa --
cam --
exp --
night --
Return
------
y2: list
"""
import yaml
cam, exp, night = self.cam, self.exp, self.night
qlf_folder = '/home/foliveira/'
exp_folder = 'qlf/spectro/redux/exposures/'
aux = '{}{}{}/{}/{}{}-{}-{}.yaml'.format(qlf_folder,exp_folder, night, exp, self.prfx, qa, cam,exp)
try:
y2 = yaml.load(open(aux, "r"))
print ('loading {}'.format(qa))
self.error.update({qa:False})
except:
y2 = None
print ('{}: yaml not found'.format(qa) )
#self.error.update({qa:True})
print ( aux )
return y2
def Load_metrics_n_tests(self):
""" Gathers all the yaml info in 'METRICS' and 'PARAMS'
and returns them in individual dictionaries
Uses: Load_qa
Arguments
---------
qa_name: lst or str
A name or list of names of qa's
Return
------
dic_met: dictionary
A dictionary with the metric values
dic_test: dictionary
A dictionary with the test values
"""
dic_met = {}
dic_tst = {}
if isinstance(self.qa_name, list):
qa_list = self.qa_name
elif isinstance(self.qa_name, string): # for a single qa_name
qa_list = [self.qa_name]
else:
return "Invalid QA format"
for i in qa_list:
aux = self.Load_qa(i)
if aux == None:
dic_met.update({i: aux})
dic_tst.update({i: aux})
self.error.update({i:True})
else:
dic_met.update({i: aux['METRICS']})
dic_tst.update({i: aux['PARAMS']})
return dic_met, dic_tst
def keys_from_scalars(self, params_keys):
""" Finds the equivalente alert keys in yaml for a metric.
Arguments
---------
qa_name: list
A list of str w/ the QA names
params_keys: list
List of list of str w/ keys names contained in METRICS.
Return
-------
xx: dict
A dictionary of <qa_name>. For each 'qa_name' another dictionary with {kind_of_test>,
addressing a 'kind of test' to its equivalent key inside the yaml file.
"""
xx = {}
#qa_name, params_keys = self.qa_name, self.params_keys
params_keys = self.params_keys
for index, scalar in enumerate(self.qa_name):
if scalar=='xwsigma': # Redistrubuting xsigma and wsigma
xx['xsigma'] = {'alarm':'XSHIFT_ALARM_RANGE', 'warn':'XSHIFT_WARN_RANGE'}
xx['wsigma'] = {'alarm':'WSHIFT_ALARM_RANGE', 'warn':'WSHIFT_WARN_RANGE'}
xx.update({'xsigma':{'alarm':'XSHIFT_ALARM_RANGE', 'warn':'XSHIFT_WARN_RANGE'}
,'wsigma':{'alarm':'WSHIFT_ALARM_RANGE', 'warn':'WSHIFT_WARN_RANGE'}})
else:
for j in params_keys[index]:
#print j
if 'ALARM_RANGE' in j:
alarm_name = j
if 'WARN_RANGE' in j:
warn_name = j
try:
xx.update({scalar: {'alarm':alarm_name, 'warn':warn_name}})
except:
print ('Error during dictionary update')
return xx
def test_ranges(self, qa, kind_of_test):
""" Returns the range of a given test from the yaml file.
Arguments
---------
qa: ?list
?d
kind_of_test: ?list
?d
Return
------
test_range: list
A list representing [min_value, max_value]
"""
self.qa = qa
self.kot = kind_of_test
qa_name = ['countpix', 'getbias', 'getrms'
, 'xwsigma', 'countbins', 'integ'
, 'skycont', 'skypeak', 'skyresid', 'snr']
metrics = self.metrics
tests = self.tests
self.par_k = self.params_keys
#self.d = self.keys_from_scalars(qa_name, self.par_k)#f
self.d = self.keys_from_scalars(self.par_k)
qalist = qa_name + ['xsigma', 'wsigma']
if self.kot not in ['warn', 'alarm']:
raise Exception('Error: Invalid test value:', self.kot)
if self.qa == 'xwsigma':
raise Exception('Error: Please use either xsigma or wsigma.')
elif self.qa not in qalist:
raise Exception('Error: Invalid QA name:', qa)
elif(self.qa in ['xsigma', 'wsigma']):
qa_2 = 'xwsigma'
test_range = tests[qa_2][self.d[self.qa][self.kot]]
else:
test_range = tests[qa][self.d[self.qa][self.kot]]
return test_range
def qa_status(self, qa):
"""Returns the alert of a given qa
Arguments
---------
qa: str
Return
------
status: str
Possible values: 'NORMAL', 'WARN' or 'ALARM'
"""
#self.qa = qa
if qa == 'xwsigma':
alarm_x = self.test_ranges('xsigma','alarm')
warn_x = self.test_ranges('xsigma','warn')
val_x = self.metrics[qa][self.metric_dict['xsigma']]
alarm_w = self.test_ranges('wsigma','alarm')
warn_w = self.test_ranges('wsigma','warn')
val_w = self.metrics[qa][self.metric_dict['wsigma']]
if isinstance(val_w,float) or isinstance(val_w, int) or isinstance(val_x,float) or isinstance(val_x, int):
pass
else:
raise Exception ("Invalid variable type in xwsigma: {} or {}".format(val_x, val_w))
if( val_w <= alarm_w[0] or val_w >= alarm_w[1] or val_x <= alarm_x[0] or val_x >= alarm_x[1]):
# ">=" comes from pipeline definition!
return 'ALARM'
elif(val_x <= warn_x[0] or val_x >= warn_x[1] or val_w <= warn_w[0] or val_w >= warn_w[1] ):
return 'WARN'
else:
return 'NORMAL'
elif(qa == 'xsigma' or qa == 'wsigma'):
print('Please, use xwsigma')
return 'Error'
# Original
else:
alarm = self.test_ranges(qa,'alarm')
warn = self.test_ranges(qa,'warn')
val = self.metrics[qa][self.metric_dict[qa]]
#dbprint(qa, self.metric_dict[qa])
if val ==[]:
return 'ALARM'
if isinstance(val,float) or isinstance(val, int):
pass
else:
self.error.update({qa:True})
raise Exception ("Invalid variable type:{} in".format(val), qa)
if ( val <= alarm[0] or val >= alarm[1]): # ">=" comes from pipeline definition!
return 'ALARM'
elif (val <= warn[0] or val >= warn[1] ):
return 'WARN'
else:
return 'NORMAL'
def step_color(self, step_name):
""" Colors for the wedges in a given step of the pipeline
FOR WHILE PARTIAL!!!: Until we find all scalars
Missing: Xsigma and Wsigma
Arguments
---------
step_name: str
The abbreviated name of one of the four QA steps
Return
------
color: str
Wedge color Alert
"""
self.step_name = step_name
steps_list = ['preproc', 'extract', 'fiberfl', 'skysubs']
if not isinstance(self.step_name, str):
return "{} is not a String".format(self.step_name)
if self.step_name not in steps_list:
return "Invalid step: please return a value in {}".format(steps_list)
steps_dic = {'preproc':['countpix', 'getbias','getrms', 'xwsigma'],
'extract':['countbins'],
'fiberfl':['integ','skycont','skypeak','skyresid'],
'skysubs':['snr']}
steps_status = []
print ( 'init_error', self.error )
for i in steps_dic[self.step_name]:
print (i, self.error[i])
if(self.error[i]):
print ('QL FAILURE')
steps_status.append('FAILURE')
else:
aux1 = self.qa_status(i)
steps_status.append(aux1)
#pass
#for i in PARTIALsteps_dic[self.step_name]:
# steps_status.append(self.qa_status(i))
print( 'Steps_status:', steps_status)
if any(x=='FAILURE' for x in steps_status):
color = 'magenta' # Pick a color for failure case
elif any( x == 'ALARM' for x in steps_status):
color = "red"
print( color )
elif any( x == 'WARN' for x in steps_status):
color = "yellow"
print( color )
elif all(x=='NORMAL' for x in steps_status): #intentionally redundant
color = "green"
print( color )
return color
# *************************************************************************
if __name__=="__main__":
#test 03 colors for wedges:
cam, exp, night = 'z0', '00000003', '20190101'
lm = LoadMetrics(cam, exp, night)
print(lm.step_color('preproc'))
"""
cam, exp, night = 'z0', '00000003', '20190101'
print ("\n\nTests for the available scalars and using yaml output\n"\
, "="*50)
print ("TO DO:\n *docs of functions \n *what more else?")
# test 01
lm = LoadMetrics(cam, exp, night)
print(lm.PARTIALstep_color('preproc'))
"""
"""
print lm.keys_from_scalars('getbias','warn')
print lm.test_ranges('getbias', 'warn')
print lm.qa_status('countpix')
# test 02:
print '\nEvaluated here:\n'
my_metrics = lm.metrics
for i in lm.metric_qa_list:
print '{}: \t{}'.format(i, lm.qa_status(i) )
print '\n\nFrom QL file:'
#Reading form yaml files
for j in list(my_metrics):
for jj in list(my_metrics[j]):
if '_ERR' in jj:
print 'In %s \t'%(j),
print '{}:\t {}'.format(jj, my_metrics[j][jj])
steps_dic = {'preproc':['countpix', 'getbias','getrms','wsigma', 'xsigma'],
'extract':['countbins'],
'fiberfl':['integ', 'skycont', 'skypeak', 'skyresid'],
'skysubs':['snr']}
print lm.metric_qa_list
#test 03 colors for wedges:
cam, exp, night = 'z7', '00000003', '20190101'
lm = LoadMetrics(cam, exp, night)
lm.PARTIALstep_color('sn')
"""