-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredictions.R
457 lines (363 loc) · 15.1 KB
/
predictions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
##########################################################
# Create edx and final_holdout_test sets
##########################################################
# Note: this process could take a couple of minutes
if(!require(tidyverse)) install.packages("tidyverse", repos = "https://cran.rstudio.com/")
if(!require(caret)) install.packages("caret", repos = "https://cran.rstudio.com/")
if(!require(kamila)) install.packages("kamila", repos = "https://cran.rstudio.com/")
if(!require(recipes)) install.packages("kamila", repos = "https://cran.rstudio.com/")
library(splitstackshape)
library(tidyverse)
library(caret)
library(ggplot2)
library(kamila)
library(readr)
library(recipes)
library(lubridate)
# MovieLens 10M dataset:
# https://grouplens.org/datasets/movielens/10m/
# http://files.grouplens.org/datasets/movielens/ml-10m.zip
options(timeout = 120)
dl <- "ml-10M100K.zip"
if(!file.exists(dl))
download.file("https://files.grouplens.org/datasets/movielens/ml-10m.zip", dl)
ratings_file <- "ml-10M100K/ratings.dat"
if(!file.exists(ratings_file))
unzip(dl, ratings_file)
movies_file <- "ml-10M100K/movies.dat"
if(!file.exists(movies_file))
unzip(dl, movies_file)
# ratings <- as.data.frame(str_split(read_lines(ratings_file), fixed("::"), simplify = TRUE),
# stringsAsFactors = FALSE)
# had to adjust due to fixed() erroring out
ratings <- as.data.frame(str_split(read_lines(ratings_file), coll("::"), simplify = TRUE),
stringsAsFactors = FALSE)
colnames(ratings) <- c("userId", "movieId", "rating", "timestamp")
ratings <- ratings %>%
mutate(userId = as.integer(userId),
movieId = as.integer(movieId),
rating = as.numeric(rating),
timestamp = as.integer(timestamp))
# movies <- as.data.frame(str_split(read_lines(movies_file), fixed("::"), simplify = TRUE),
# stringsAsFactors = FALSE)
movies <- as.data.frame(str_split(read_lines(movies_file), coll("::"), simplify = TRUE),
stringsAsFactors = FALSE)
colnames(movies) <- c("movieId", "title", "genres")
movies <- movies %>%
mutate(movieId = as.integer(movieId))
#ADDED RELEASE YEAR and time since release to time of rating to both sets
movielens <- left_join(ratings, movies, by = "movieId") %>%
mutate(release_year = as.numeric(str_sub(title,-5,-2)),
years_since = ifelse(year(timestamp) - release_year <= 0, 0, year(timestamp) - release_year))
# Final hold-out test set will be 10% of MovieLens data
set.seed(1, sample.kind="Rounding") # if using R 3.6 or later
# set.seed(1) # if using R 3.5 or earlier
test_index <- createDataPartition(y = movielens$rating, times = 1, p = 0.1, list = FALSE)
edx <- movielens[-test_index,]
temp <- movielens[test_index,]
# Make sure userId and movieId in final hold-out test set are also in edx set
final_holdout_test <- temp %>%
semi_join(edx, by = "movieId") %>%
semi_join(edx, by = "userId")
# Add rows removed from final hold-out test set back into edx set
removed <- anti_join(temp, final_holdout_test)
edx <- rbind(edx, removed)
rm(dl, ratings, movies, test_index, temp, movielens, removed, movies_file, ratings_file)
# #-------------------------------#
# # Save myself some time and save the imported data sets locally
# library(readr)
# library(tidyverse)
# library(caret)
#
# write_csv(edx, "./MainData.csv")
# write_csv(final_holdout_test, "./FinalHoldout.csv")
#
# #read the datasets
# edx <- read.csv("./MainData.csv")
# final_holdout_test <- read.csv("./FinalHoldout.csv")
# #--------------------------------------------------------------------#
#----------Exploring Data----------------------
# of movies
n_distinct(edx$movieId)
# of users
n_distinct(edx$userId)
# frequency of user rating
edx %>% count(userId) %>%
ggplot(aes(n)) + geom_histogram() +
labs(x = "Number of users", y = "Frequency of ratings") +
xlim(0,3000) + scale_y_log10()
# frequency of movie rating
edx %>% count(movieId) %>%
ggplot(aes(n)) + geom_histogram() +
labs(x = "Number of movies", y = "Frequency of ratings") +
scale_y_log10()
#Years since release date for years with over 1000 ratings
edx %>% group_by(years_since) %>%
filter(n() > 1000)%>%
summarise(mean = mean(rating)) %>%
ggplot(aes(years_since,mean)) +geom_point() +geom_smooth(span = 0.5, se = FALSE)
#creates sets of each user and then takes 20% of each user for testing
set.seed(2006)
indexes <- split(1:nrow(edx), edx$userId)
test_ind <- sapply(indexes, function(ind) sample(ind, ceiling(length(ind)*.2))) %>%
unlist(use.names = TRUE) %>% sort()
training <- edx[-test_ind,]
temp <- edx[test_ind,]
# Make sure same movieId in testing and training
testing <- temp %>%
semi_join(training, by = "movieId")
# Add rows removed from final hold-out test set back into edx set
removed <- anti_join(temp, testing)
training <- rbind(training, removed)
#root mean squared error
RMSE <- function(true_ratings, predicted_ratings){
sqrt(mean((true_ratings - predicted_ratings)^2))
}
#base model using the avg for all ratings
mu <- training %>% summarize(m = mean(rating)) %>% pull(m)
mu
RMSE(testing$rating, mu)
#basic model using avg rating for the movie
avg_ratings_by_movie <- training %>% group_by(movieId) %>%
summarize(b_i = mean(rating) - mu,
n = n(),
sums = sum(rating - mu))
inner_join(testing,avg_ratings_by_movie, by = 'movieId') %>%
summarize(RMSE = RMSE(rating, b_i + mu))
#basic model using avg rating by user
#RMSE 0.98
avg_ratings_by_user <- training %>% group_by(userId) %>%
summarize(b_u = mean(rating) - mu,
n = n(),
sums = sum(rating - mu))
inner_join(testing, avg_ratings_by_user, by = 'userId') %>%
summarize(RMSE = RMSE(rating, b_u + mu))
#basic model using avg rating by genre groups
avg_ratings_by_genre <- training %>% group_by(genres) %>%
summarize(b_g = mean(rating) - mu,
n = n(),
sums = sum(rating - mu))
inner_join(testing, avg_ratings_by_genre, by = 'genres') %>%
summarize(RMSE = RMSE(rating, b_g + mu))
#basic model using avg rating by release year
avg_ratings_by_release_year <- training %>%
group_by(release_year) %>%
summarize(n = n(),
sums = sum(rating - mu))
#movie + user bias
left_join(testing, avg_ratings_by_movie, by = "movieId") %>%
left_join(avg_ratings_by_user, by = "userId") %>%
mutate(pred = mu + b_i + b_u) %>%
summarize(rmse = RMSE(rating, pred))
#finding the best lambda for smoothing movie effect
lambdas <- seq(0, 3, 0.05)
rmses <- sapply(lambdas, function(lambda){
avg_ratings_by_movie$b_i <- avg_ratings_by_movie$sums / (avg_ratings_by_movie$n + lambda)
left_join(testing, avg_ratings_by_movie, by = "movieId") %>% mutate(pred = mu + b_i) %>%
summarize(rmse = RMSE(rating, pred)) %>%
pull(rmse)
})
#plot regularized movie effect
qplot(lambdas, rmses, geom = "line")
lambda_i <- lambdas[which.min(rmses)]
print(lambda_i)
avg_ratings_by_movie$b_i <- avg_ratings_by_movie$sums / (avg_ratings_by_movie$n + lambda_i)
#training_reg used to keep track of the b_[] for future regulation formulas
training_reg <- left_join(training,avg_ratings_by_movie, by = "movieId") %>%
select(-n,-sums)
#adjust b_u to reg. b_i
avg_ratings_by_user <- training_reg %>%
mutate(x = rating - mu - b_i) %>%
group_by(userId) %>%
summarize(b_u = mean(x),
n = n(),
sums = sum(x))
#reg movie + user effect effect
user_movie_model <- left_join(testing, avg_ratings_by_movie, by = "movieId")
#gc() #frees up memory for next command, takes a couple min
left_join(user_movie_model, avg_ratings_by_user, by = "userId") %>%
mutate(pred = mu + b_i + b_u) %>%
summarize(rmse = RMSE(rating, pred))
#regularize for users
lambdas <- seq(3, 7, 0.25)
rmses <- sapply(lambdas, function(lambda){
avg_ratings_by_user$b_u <- avg_ratings_by_user$sums / (avg_ratings_by_user$n + lambda)
left_join(testing, avg_ratings_by_user, by = "userId") %>%
left_join(avg_ratings_by_movie, by = "movieId") %>%
mutate(pred = mu + b_u + b_i) %>%
summarize(rmse = RMSE(rating, pred)) %>%
pull(rmse)
})
qplot(lambdas, rmses, geom = "line")
lambda_u <- lambdas[which.min(rmses)]
print(lambda_u)
avg_ratings_by_user$b_u <- avg_ratings_by_user$sums / (avg_ratings_by_user$n + lambda_u)
training_reg <- left_join(training_reg, avg_ratings_by_user, by = "userId") %>%
select(-n,-sums)
#adj genres for bi&bu before regularization
avg_ratings_by_genre <- training_reg %>%
mutate(x = rating - mu - b_i - b_u) %>%
group_by(genres) %>%
summarize(n = n(),
sums = sum(x))
#regularize for genres
lambdas <- seq(24, 28, 0.25)
rmses <- sapply(lambdas, function(lambda){
avg_ratings_by_genre$b_g <- avg_ratings_by_genre$sums / (avg_ratings_by_genre$n + lambda)
left_join(testing, avg_ratings_by_genre, by = "genres") %>%
left_join(avg_ratings_by_movie, by = "movieId") %>%
left_join(avg_ratings_by_user, by = "userId") %>%
mutate(pred = mu + b_u + b_i + b_g) %>%
summarize(rmse = RMSE(rating, pred)) %>%
pull(rmse)
})
#regularized genre groups effect
qplot(lambdas, rmses, geom = "line")
lambda_g <- lambdas[which.min(rmses)]
print(lambda_g)
avg_ratings_by_genre$b_g <- avg_ratings_by_genre$sums / (avg_ratings_by_genre$n + lambda_g)
training_reg <- left_join(training_reg, avg_ratings_by_genre, by = "genres") %>%
select(-n,-sums)
#adj genres for all previous b_[] before regularization
avg_ratings_by_release_year <- training_reg %>%
mutate(x = rating - mu - b_i - b_u - b_g) %>%
group_by(release_year) %>%
summarize(n = n(),
sums = sum(x))
#regularize for release year
lambdas <- seq(-18, -14, .25)
rmses <- sapply(lambdas, function(lambda){
avg_ratings_by_release_year$b_r <- avg_ratings_by_release_year$sums / (avg_ratings_by_release_year$n + lambda)
left_join(testing, avg_ratings_by_release_year, by = "release_year") %>%
left_join(avg_ratings_by_movie, by = "movieId") %>%
left_join(avg_ratings_by_user, by = "userId") %>%
left_join(avg_ratings_by_genre, by = "genres") %>%
mutate(pred = mu + b_u + b_i + b_g + b_r) %>%
summarize(rmse = RMSE(rating, pred)) %>%
pull(rmse)
})
#regularized release year effect
qplot(lambdas, rmses, geom = "line")
lambda_r <- lambdas[which.min(rmses)]
print(lambda_r)
avg_ratings_by_release_year$b_r <- avg_ratings_by_release_year$sums / (avg_ratings_by_release_year$n + lambda_r)
training_reg <- left_join(training_reg, avg_ratings_by_release_year, by = "release_year") %>%
select(-n,-sums)
#adj years between rating and release
avg_ratings_by_rating_time <- training_reg %>%
mutate(x = rating - mu - b_i - b_u - b_g - b_r) %>%
group_by(years_since) %>%
summarize(n = n(),
sums = sum(x))
lambdas <- seq(99, 102, 0.25)
rmses <- sapply(lambdas, function(lambda){
avg_ratings_by_rating_time$b_y <- avg_ratings_by_rating_time$sums / (avg_ratings_by_rating_time$n + lambda)
left_join(testing, avg_ratings_by_rating_time, by = "years_since") %>%
left_join(avg_ratings_by_movie, by = "movieId") %>%
left_join(avg_ratings_by_user, by = "userId") %>%
left_join(avg_ratings_by_genre, by = "genres") %>%
left_join(avg_ratings_by_release_year, by = "release_year") %>%
mutate(pred = mu + b_u + b_i + b_g + b_r + b_y) %>%
summarize(rmse = RMSE(rating, pred)) %>%
pull(rmse)
})
#regularized years since release effect
qplot(lambdas, rmses, geom = "line")
lambda_y <- lambdas[which.min(rmses)]
print(lambda_y)
avg_ratings_by_rating_time$b_y <- avg_ratings_by_rating_time$sums / (avg_ratings_by_rating_time$n + lambda_y)
#----------------------final check--------------------------
left_join(final_holdout_test, avg_ratings_by_movie, by = "movieId") %>%
select(-n,-sums) %>%
left_join(avg_ratings_by_user, by = "userId") %>%
select(-n,-sums) %>%
left_join(avg_ratings_by_genre, by = "genres") %>%
select(-n,-sums) %>%
left_join(avg_ratings_by_release_year, by = "release_year") %>%
select(-n,-sums) %>%
left_join(avg_ratings_by_rating_time, by = "years_since") %>%
select(-n,-sums) %>%
mutate(pred = mu + b_i + b_u + b_g + b_r + b_y) %>%
summarize(RMSE(rating, pred))
#--------Less successful methods-------------------
#-------Most of these will take forever to run, none beat the methods above.
# Trying out using recipes with caret
my_recipe <- recipe(rating ~ ., data = training) %>%
update_role(title, new_role = "ID") %>%
update_role(genres, new_role = "ID") #sets the title feature to be kept but not used for modeling
# step_dummy(genres, one_hot = TRUE) #One Hot encoding the genres
my_recipe
summary(my_recipe)
library(kernlab)
# Support Vector Machine with Radial
# runs for very long time
set.seed(888)
train_svm <- train(my_recipe, training,
method = "svmRadial",
metric = "wRMSE",
maximize = FALSE,
tuneLength = 10)
train_svm
#RMSE is higher so example of overfitting
RMSE(predict(train_svm, testing), testing$rating)
#loess method
b <- 5
control <- trainControl(method = "cv", number = b, p = .9)
train_Loess <- train(my_recipe, training,
method = "gamLoess",
#tuneGrid = data.frame(k = seq(1,60,2)),
trControl = control)
train_Loess
RMSE(predict(train_Loess, testing), testing$rating)
#------------------
# # Kamila method, ran for 15-30 min on my device and pushed memory limits but is possible
# # supposed to be good for lots of categorical data (genres) with better performance.
# # But it did not beat regularized data above
set.seed(52)
kamind <- createDataPartition(edx$userId, p = 0.7, list = FALSE)
kamtrain <- edx[kamind,]
kamtest <- edx[-kamind,]
kamtest <- kamtest %>%
semi_join(kamtrain, by = "movieId") %>%
mutate(release_year = as.numeric(str_sub(title,-5,-2)))
kamtrain <- kamtrain %>%
semi_join(kamtest, by = "movieId") %>%
mutate(release_year = as.numeric(str_sub(title,-5,-2)))
#creates dummy variables for each genre
kamtrain_dummy <- cSplit_e(kamtrain, "genres", "|", type = "character", fill = 0, drop = F)
kamtest_dummy <- cSplit_e(kamtest, "genres", "|", type = "character", fill = 0, drop = F)
#continous variables (numbers)
conInd <- c(4,7)
conVars <- kamtrain[,conInd]
conTest <- kamtest[,conInd]
#categorical variables
catInd <- c(1,2,7:25) #dummy variables
catInd2 <- c(1,2,6) #genre groups in tact
catVarsFac <- kamtrain_dummy[,catInd]
catVarsFac[] <- lapply(catVarsFac, factor)
catVar2 <- data.frame(lapply(kamtrain[,catInd2],as.factor))
#make sure cat variables are factors
catTestFac <- kamtrain_dummy[,catInd]
catTestFac[] <- lapply(catTestFac, factor)
catTest2 <- data.frame(lapply(kamtest[,catInd2],as.factor))
# KAMILA clustering 13 min
kamRes <- kamila(conVars, catVar2, numClust=3, numInit=10)
kamPred <- classifyKamila(kamRes, list(conTest, catTest2))
table(kamtest$rating, kamPred)
# Plot KAMILA results
plottingData <- cbind(
conVars,
catVar2,
KamilaCluster = factor(kamRes$finalMemb))
plottingData$Bone.metastases <- ifelse(
plottingData$Bone.metastases == '1', yes='Yes',no='No')
ggplot(
plottingData,
aes(
x=logSpap,
y=Index.of.tumour.stage.and.histolic.grade,
color=ternarySurvival,
shape=KamilaCluster)) + geom_point()
rm(kamtest, kamtest_dummy, kamtrain, kamtrain_dummy,
testcatVarsFac, kamind, kamRes, catVarsFac, conTest, conVars)
# #-------------------