-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathcredit_model.py
133 lines (107 loc) · 4.16 KB
/
credit_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from pathlib import Path
import feast
import joblib
import pandas as pd
from sklearn import tree
from sklearn.exceptions import NotFittedError
from sklearn.preprocessing import OrdinalEncoder
from sklearn.utils.validation import check_is_fitted
class CreditScoringModel:
categorical_features = [
"person_home_ownership",
"loan_intent",
"city",
"state",
"location_type",
]
feast_features = [
"zipcode_features:city",
"zipcode_features:state",
"zipcode_features:location_type",
"zipcode_features:tax_returns_filed",
"zipcode_features:population",
"zipcode_features:total_wages",
"credit_history:credit_card_due",
"credit_history:mortgage_due",
"credit_history:student_loan_due",
"credit_history:vehicle_loan_due",
"credit_history:hard_pulls",
"credit_history:missed_payments_2y",
"credit_history:missed_payments_1y",
"credit_history:missed_payments_6m",
"credit_history:bankruptcies",
]
target = "loan_status"
model_filename = "model.bin"
encoder_filename = "encoder.bin"
def __init__(self):
# Load model
if Path(self.model_filename).exists():
self.classifier = joblib.load(self.model_filename)
else:
self.classifier = tree.DecisionTreeClassifier()
# Load ordinal encoder
if Path(self.encoder_filename).exists():
self.encoder = joblib.load(self.encoder_filename)
else:
self.encoder = OrdinalEncoder()
# Set up feature store
self.fs = feast.FeatureStore(repo_path="feature_repo")
def train(self, loans):
train_X, train_Y = self._get_training_features(loans)
self.classifier.fit(train_X[sorted(train_X)], train_Y)
joblib.dump(self.classifier, self.model_filename)
def _get_training_features(self, loans):
training_df = self.fs.get_historical_features(
entity_df=loans, features=self.feast_features
).to_df()
self._fit_ordinal_encoder(training_df)
self._apply_ordinal_encoding(training_df)
train_X = training_df[
training_df.columns.drop(self.target)
.drop("event_timestamp")
.drop("created_timestamp")
.drop("loan_id")
.drop("zipcode")
.drop("dob_ssn")
]
train_X = train_X.reindex(sorted(train_X.columns), axis=1)
train_Y = training_df.loc[:, self.target]
return train_X, train_Y
def _fit_ordinal_encoder(self, requests):
self.encoder.fit(requests[self.categorical_features])
joblib.dump(self.encoder, self.encoder_filename)
def _apply_ordinal_encoding(self, requests):
requests[self.categorical_features] = self.encoder.transform(
requests[self.categorical_features]
)
def predict(self, request):
# Get online features from Feast
feature_vector = self._get_online_features_from_feast(request)
# Join features to request features
features = request.copy()
features.update(feature_vector)
features_df = pd.DataFrame.from_dict(features)
# Apply ordinal encoding to categorical features
self._apply_ordinal_encoding(features_df)
# Sort columns
features_df = features_df.reindex(sorted(features_df.columns), axis=1)
# Drop unnecessary columns
features_df = features_df[features_df.columns.drop("zipcode").drop("dob_ssn")]
# Make prediction
features_df["prediction"] = self.classifier.predict(features_df)
# return result of credit scoring
return features_df["prediction"].iloc[0]
def _get_online_features_from_feast(self, request):
zipcode = request["zipcode"][0]
dob_ssn = request["dob_ssn"][0]
return self.fs.get_online_features(
entity_rows=[{"zipcode": zipcode, "dob_ssn": dob_ssn}],
features=self.feast_features,
).to_dict()
def is_model_trained(self):
try:
check_is_fitted(self.classifier, "tree_")
except NotFittedError:
return False
return True