-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmyKmeans.m
100 lines (86 loc) · 2.46 KB
/
myKmeans.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
function solution = myKmeans(X, K, nbr_runs, nbr_iter_max, verbose)
% function res = myKmeans(X, K, nbr_runs, nbr_iter_max, verbose)
%
% Algorithme des K-means
%
%
%
% Faicel CHAMROUKHI Septembre 2008 (mise a jour)
%
%
%
% distance euclidienne
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if nargin<5; verbose=0;end
if nargin<4; nbr_iter_max = 300;end
if nargin<3; nbr_runs = 20;end
[n, p] = size(X);
% if one class
global_mean = mean(X,1);
if K==1
dmin = sum((X-ones(n, 1)*global_mean).^2,2);
solution.muk = global_mean;
klas = ones(n,1);
solution.klas = klas;
solution.err = sum(dmin);
solution.Zik = ones(n,1);
return;
end
nbr_run = 0;
best_solution.err = inf;
while (nbr_run<nbr_runs)
nbr_run=nbr_run + 1;
if (nbr_runs>1 && verbose); fprintf('Kmeans run n° : %d \n',nbr_run);end
iter = 0;
converged = 0;
previous_err = -inf;
Zik = zeros(n,K);% partition
%% 1. Initialization of the centres
rnd_indx = randperm(n);
centres = X(rnd_indx(1:K),:);
while (iter<nbr_iter_max && ~converged)
iter = iter+1;
old_centres = centres;
% The Euclidean distances
eucld_dist = zeros(n, K);
for k = 1:K
muk = centres(k,:);
eucld_dist(:,k) = sum((X-ones(n,1)*muk).^2,2);
end
%% classification step
[dmin, klas] = min(eucld_dist,[],2);
Zik = (klas*ones(1,K))==(ones(n,1)*[1:K]);
%% relocation step
for k=1:K
ind_ck = find(klas==k);
%if empty classes
if isempty(ind_ck)
centres(k,:)= old_centres(k,:);
else
% update the centres
centres(k,:) = mean(X(ind_ck,:),1);
end
end
% test of convergence
current_err = sum(sum(Zik.*eucld_dist,2)); % the distorsion measure
if (abs(current_err-previous_err))/previous_err <1e-6
converged = 1;
end
previous_err = current_err;
if verbose
fprintf('Kmeans : Iteration %d Objective: %6f \n', iter, current_err);
end
solution.stored_err(iter) = current_err;
end% one run
%%
solution.muk = centres;
solution.Zik = Zik;
solution.klas = klas;
solution.err = current_err;
%
if current_err < best_solution.err
best_solution = solution;
end
end %en of the Kmeans runs
solution = best_solution;